Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses

被引:107
作者
Lee, Shinyoung
Choi, Sang Chul
An, Gynheung [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea
关键词
brassinosteroid response; MADS; OsMADS22; OsMADS55; rice; short vegetative phase;
D O I
10.1111/j.1365-313X.2008.03406.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Most short vegetative phase (SVP)-group MADS-box genes control meristem identity and flowering time. Among the three SVP-group genes in rice, OsMADS47 has been reported as a negative regulator of brassinosteroid (BR) responses. Here, we investigated the functional roles of two close homologs, OsMADS22 and OsMADS55, by generating single, double and triple RNAi lines and overexpression lines. Analyses of the plants showed that their roles in regulating meristem identity are well conserved; however, the involvement of these genes in determining flowering time has diversified. Most importantly, OsMADS55 works as a major negative regulator of BR responses, and OsMADS22 functions to support OsMADS55. Whereas single OsMADS55 RNAi plants display weak BR responses in the lamina joint (LJ), OsMADS22-OsMADS55 double and OsMADS22-OsMADS47-OsMADS55 triple RNAi plants manifest dramatic BR responses with regard to LJ inclination, coleoptile elongation and senescence. Stem elongation is also notably reduced in the double and triple RNAi plants, probably because of BR oversensitivity. Expression analyses indicate the diversified roles in age-dependent BR responses. Altogether, our study demonstrates that all three rice SVP-group genes work as negative regulators of BR responses, but that their spatial and temporal roles are diversified.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 55 条
[1]   Molecular physiology of brassinosteroids revealed by the analysis of mutants [J].
Altmann, T .
PLANTA, 1999, 208 (01) :1-11
[2]   Generation and analysis of end sequence database for T-DNA tagging lines in rice [J].
An, SY ;
Park, S ;
Jeong, DH ;
Lee, DY ;
Kang, HG ;
Yu, JH ;
Hur, J ;
Kim, SR ;
Kim, YH ;
Lee, M ;
Han, SK ;
Kim, SJ ;
Yang, JW ;
Kim, E ;
Wi, SJ ;
Chung, HS ;
Hong, JP ;
Choe, V ;
Lee, HK ;
Choi, JH ;
Nam, JM ;
Kim, SR ;
Park, PB ;
Park, KY ;
Kim, WT ;
Choe, S ;
Lee, CB ;
An, GH .
PLANT PHYSIOLOGY, 2003, 133 (04) :2040-2047
[3]   MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress [J].
Arora, Rita ;
Agarwal, Pinky ;
Ray, Swatismita ;
Singh, Ashok Kumar ;
Singh, Vijay Pal ;
Tyagi, Akhilesh K. ;
Kapoor, Sanjay .
BMC GENOMICS, 2007, 8 (1)
[4]   Plant brassinosteroid hormones [J].
Asami, T ;
Nakano, T ;
Fujioka, S .
PLANT HORMONES, 2005, 72 :479-504
[5]   Brassinosteroid signaling: A paradigm for steroid hormone signaling from the cell surface [J].
Belkhadir, Youssef ;
Chory, Joanne .
SCIENCE, 2006, 314 (5804) :1410-1411
[6]   Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L. [J].
Carmona, MJ ;
Ortega, N ;
Garcia-Maroto, F .
PLANTA, 1998, 207 (02) :181-188
[7]   Signal-transduction pathways toward the regulation of brassinosteroid biosynthesis [J].
Choe, Sunghwa .
JOURNAL OF PLANT BIOLOGY, 2007, 50 (03) :225-229
[8]   Comprehensive interaction map of the Arabidopsis MADS box transcription factors [J].
de Folter, S ;
Immink, RGH ;
Kieffer, M ;
Parenicová, L ;
Henz, SR ;
Weigel, D ;
Busscher, M ;
Kooiker, M ;
Colombo, L ;
Kater, MM ;
Davies, B ;
Angenent, GC .
PLANT CELL, 2005, 17 (05) :1424-1433
[9]   Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1l [J].
Doi, K ;
Izawa, T ;
Fuse, T ;
Yamanouchi, U ;
Kubo, T ;
Shimatani, Z ;
Yano, M ;
Yoshimura, A .
GENES & DEVELOPMENT, 2004, 18 (08) :926-936
[10]   A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling [J].
Duan, Ke ;
Li, Li ;
Hu, Peng ;
Xu, Shu-Ping ;
Xu, Zhi-Hong ;
Xue, Hong-Wei .
PLANT JOURNAL, 2006, 47 (04) :519-531