Silica-cellulose hybrid aerogels for thermal and acoustic insulation. applications

被引:175
作者
Feng, Jingduo [1 ]
Le, Duyen [2 ]
Nguyen, Son T. [2 ]
Nien, Victor Tan Chin [1 ]
Jewell, Daniel [3 ]
Duong, Hai M. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117576, Singapore
[2] Ho Chi Minh City Univ Technol, VNU HCM, Fac Chem Engn, 268 Ly Thuong Kiet St,Dist 10, Ho Chi Minh City, Vietnam
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 1TN, England
关键词
Aerogel; Recycled cellulose fibre; Silica; Acoustic insulation; Thermal insulation; ABSORPTION PROPERTIES; COMPOSITE AEROGELS; CONDUCTIVITY; PERFORMANCE; PRECURSORS; WASTE; NOISE; FIBER; PAPER;
D O I
10.1016/j.colsurfa.2016.06.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silica-cellulose aerogels were successfully developed from recycled cellulose fibres and methoxytrimethylsilane (MTMS) silica precursor for the first time. The developed silica-cellulose aerogels showed the super-hydrophobicity with an average water contact angle of 151 degrees. Their thermal conductivity was approximately 0.04 W/mK. Moreover, the thermal degradation temperature for the cellulose component of the silica-cellulose aerogels showed a 25 degrees C improvement over those for cellulose aerogels. The sound absorption coefficients of the silica-cellulose aerogels with a 10 mm thickness were 0.39-0.50, better than those of cellulose aerogels (0.30-0.40) and commercial polystyrene foams. When the cellulose fibre concentration increases from 1.0 to 4.0 wt%, the compressive Young's modulus of the silica-cellulose aerogels can be enhanced 160%, up to 139 KPa. This work provides a facile approach to fabricate cost-effective and promising silica-cellulose aerogels with industrial dimensions for thermal and acoustic insulation applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:298 / 305
页数:8
相关论文
共 48 条
[21]   Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger [J].
Ikeda, Y ;
Park, EY ;
Okuda, N .
BIORESOURCE TECHNOLOGY, 2006, 97 (08) :1030-1035
[22]  
Jia N, 2011, BIORESOURCES, V6, P1186
[23]  
John B.H., 1999, MICROSCALE THERM ENG, V3, P199
[24]  
Kiran M. C., 2012, International Journal of Agriculture and Forestry, V2, P257
[25]  
Laufmann M., 2013, Handbook of Paper and Board ed, P109
[26]   Silica modified cellulosic aerogels [J].
Litschauer, Marco ;
Neouze, Marie-Alexandra ;
Haimer, Emmerich ;
Henniges, Ute ;
Potthast, Antje ;
Rosenau, Thomas ;
Liebner, Falk .
CELLULOSE, 2011, 18 (01) :143-149
[27]   Transient thermal conductivity measurements: comparison of destructive and nondestructive techniques [J].
Mathis, N .
HIGH TEMPERATURES-HIGH PRESSURES, 2000, 32 (03) :321-327
[28]   Silica-Aerogel Cotton Composites as Sound Absorber [J].
Motahari, Siamak ;
Javadi, Hamidreza ;
Motahari, Ali .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (09)
[29]   An overview of global climate changing in current scenario and mitigation action [J].
Nema, Pragya ;
Nema, Sameer ;
Roy, Priyanka .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (04) :2329-2336
[30]  
Nguyen ST, 2014, COLLOID SURFACE A, V445, P128, DOI [10.1016/j.colsurfa.2014.01.015, 10.1016/j.Colsurfa.2014.01.015]