Silica-cellulose hybrid aerogels for thermal and acoustic insulation. applications

被引:175
作者
Feng, Jingduo [1 ]
Le, Duyen [2 ]
Nguyen, Son T. [2 ]
Nien, Victor Tan Chin [1 ]
Jewell, Daniel [3 ]
Duong, Hai M. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117576, Singapore
[2] Ho Chi Minh City Univ Technol, VNU HCM, Fac Chem Engn, 268 Ly Thuong Kiet St,Dist 10, Ho Chi Minh City, Vietnam
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 1TN, England
关键词
Aerogel; Recycled cellulose fibre; Silica; Acoustic insulation; Thermal insulation; ABSORPTION PROPERTIES; COMPOSITE AEROGELS; CONDUCTIVITY; PERFORMANCE; PRECURSORS; WASTE; NOISE; FIBER; PAPER;
D O I
10.1016/j.colsurfa.2016.06.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silica-cellulose aerogels were successfully developed from recycled cellulose fibres and methoxytrimethylsilane (MTMS) silica precursor for the first time. The developed silica-cellulose aerogels showed the super-hydrophobicity with an average water contact angle of 151 degrees. Their thermal conductivity was approximately 0.04 W/mK. Moreover, the thermal degradation temperature for the cellulose component of the silica-cellulose aerogels showed a 25 degrees C improvement over those for cellulose aerogels. The sound absorption coefficients of the silica-cellulose aerogels with a 10 mm thickness were 0.39-0.50, better than those of cellulose aerogels (0.30-0.40) and commercial polystyrene foams. When the cellulose fibre concentration increases from 1.0 to 4.0 wt%, the compressive Young's modulus of the silica-cellulose aerogels can be enhanced 160%, up to 139 KPa. This work provides a facile approach to fabricate cost-effective and promising silica-cellulose aerogels with industrial dimensions for thermal and acoustic insulation applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:298 / 305
页数:8
相关论文
共 48 条
[1]   A Review of Sustainable Materials for Acoustic Applications [J].
Asdrubali, F. ;
Schiavoni, S. ;
Horoshenkov, K. .
BUILDING ACOUSTICS, 2012, 19 (04) :283-311
[2]   Aerogel insulation for building applications: A state-of-the-art review [J].
Baetens, Ruben ;
Jelle, Bjorn Petter ;
Gustavsen, Arild .
ENERGY AND BUILDINGS, 2011, 43 (04) :761-769
[3]   Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying [J].
Bhagat, Sharad D. ;
Oh, Chang-Sup ;
Kim, Yong-Ha ;
Ahn, Young-Soo ;
Yeo, Jeong-Gu .
MICROPOROUS AND MESOPOROUS MATERIALS, 2007, 100 (1-3) :350-355
[4]  
Bronzaft AL, 2010, EMERGING ENVIRONMENTAL TECHNOLOGIES, VOL II, P75, DOI 10.1007/978-90-481-3352-9_4
[5]   Unique gelation behavior of cellulose in NaOH/Urea aqueous solution [J].
Cai, J ;
Zhang, L .
BIOMACROMOLECULES, 2006, 7 (01) :183-189
[6]   Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel [J].
Cai, Jie ;
Liu, Shilin ;
Feng, Jiao ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) :2076-2079
[7]  
Chen DR, 2014, ROLE OF COLLOIDAL SYSTEMS IN ENVIRONMENTAL PROTECTION, P573, DOI 10.1016/B978-0-444-63283-8.00022-3
[8]  
Condon J.B., 2006, SURFACE AREA POROSIT
[9]   Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance [J].
Cotana, Franco ;
Pisello, Anna Laura ;
Moretti, Elisa ;
Buratti, Cinzia .
BUILDING AND ENVIRONMENT, 2014, 81 :92-102
[10]   Toward aerogel based thermal superinsulation in buildings: A comprehensive review [J].
Cuce, Erdem ;
Cuce, Pinar Mert ;
Wood, Christopher J. ;
Riffat, Saffa B. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 34 :273-299