Uniqueness of the very singular solution of a degenerate parabolic equation

被引:2
作者
Baek, JS [1 ]
Kwak, M [1 ]
Yu, K [1 ]
机构
[1] Chonnam Natl Univ, Dept Math, Kwangju 500757, South Korea
关键词
a degenerate parabolic equation; a very singular solution; uniqueness; maximum principle;
D O I
10.1016/S0362-546X(99)00334-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quasilinear degenerate diffusion equation with absorption ut = δpu - |u|q-1u in Q = RN × (0,∞) (1.1), where δpu = div(|∇u|p-2∇u), with 2N/(N + 1) < p < 2, N ≥ 2, and 1 < q < p - 1 + p/N. A very singular solution W of (1.1) is a nonnegative continuous function in Q - {(0,0)} such that (1) W(x,0) = 0 for x ≠ 0; (2) ∇W ε Lloc1(0,∞ : Wloc1,p-1(RN)) and (1.1) is satisfied in the sense of distribution in Q; (3) ∫RN W(x,t)dx → ∞ as t → 0.
引用
收藏
页码:123 / 135
页数:13
相关论文
共 10 条
[1]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[2]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[3]  
KAMIN S, 1991, IMA PREPRINT SERIES, V834
[4]   Asymptotic behaviour of solutions of a degenerate parabolic equation [J].
Kwak, M ;
Yu, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (01) :109-121
[5]   A porous media equation with absorption. I. Long time behaviour [J].
Kwak, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) :96-110
[6]   A semilinear heat equation with singular initial data [J].
Kwak, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :745-758
[7]   Porous media equation with absorption. II. Uniqueness of the very singular solution [J].
Kwak, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) :111-125
[8]   A VERY SINGULAR SOLUTION OF A QUASILINEAR DEGENERATE DIFFUSION EQUATION WITH ABSORPTION [J].
PELETIER, LA ;
WANG, JY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (02) :813-826
[9]  
PROTTER MH, 1984, MAXIMUN PRINCIPLES D
[10]   THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A QUASI-LINEAR DEGENERATE PARABOLIC EQUATION [J].
ZHAO, JN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 102 (01) :33-52