The J-matrix method

被引:25
|
作者
Ismail, Mourad E. H. [2 ,3 ]
Koelink, Erik [1 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, FNWI, NL-6525 AJ Nijmegen, Netherlands
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] King Saud Univ, Riyadh, Saudi Arabia
关键词
Tridiagonal operator; Orthogonal polynomials; Schrodinger operator with Morse potential; Lame equation; GAUSS QUADRATURE; POLYNOMIALS; CONTINUUM; SYSTEMS;
D O I
10.1016/j.aam.2010.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an operator L acting on a function space, the J-matrix method consists of finding a sequence y(n) of functions such that the operator L acts tridiagonally on y(n). Once such a tridiagonalization is obtained, a number of characteristics of the operator L can be obtained. In particular, information on eigenvalues and eigenfunctions, bound states, spectral decompositions, etc. can be obtained in this way. We discuss the general set-up and next two examples in detail; the Schrodinger operator with Morse potential and the Lame equation. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:379 / 395
页数:17
相关论文
共 50 条
  • [21] Global GPBiCGstab(L) method for solving linear matrix equations
    Horiuchi, Itsuki
    Aihara, Kensuke
    Suzuki, Toshio
    Ishiwata, Emiko
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 295 - 319
  • [22] CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION
    Han, Yin-Huan
    Kim, Hyun-Min
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 625 - 634
  • [23] DYNAMIC ANALYSIS OF PIPES CONVEYING FLUID BY TRANSFER MATRIX METHOD
    Luo Wen
    Liu Gongmin
    Wang Haoran
    Li Shuaijun
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: FROM ANCIENT TO MODERN ACOUSTICS, 2016,
  • [24] Preparation method for noble metal-polymer matrix nanocomposites
    Volynskii, A. L.
    Nikonorova, N. I.
    Volkov, A. V.
    Moskvina, M. A.
    Tunyan, A. A.
    Yaryshev, N. G.
    Arzhakova, O. V.
    Dolgova, A. A.
    Rukhlya, E. G.
    Trofimchuk, E. S.
    Abramchuk, S. S.
    Yarysheva, L. M.
    Bakeev, N. F.
    COLLOID JOURNAL, 2010, 72 (04) : 464 - 470
  • [25] A New Matrix Truncation Method for Improving Approximate Factorization Preconditioners
    Bock, Andreas A.
    Andersen, Martin S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (02)
  • [26] A TRANSFER MATRIX METHOD FOR FREE VIBRATION ANALYSIS OF TAPERING PIPE
    Zeng, Qingna
    Zang, Fenggang
    Zhang, Yixiong
    Wang, Donghui
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 3, 2019,
  • [27] An Improved Method for Parametric Model Order Reduction by Matrix Interpolation
    Liu, Ying
    Du, Huanyu
    Li, Hongguang
    Li, Fucai
    Sun, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2019, 7 (06) : 603 - 610
  • [28] A New Singular Matrix Method for Balancing Chemical Equations and Their Stability
    Risteski, Ice B.
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2009, 56 (01) : 65 - 79
  • [29] PROJECTION METHOD FOR EIGENVALUE PROBLEMS OF LINEAR NONSQUARE MATRIX PENCILS
    Morikuni, Keiichi
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (03) : 1381 - 1400
  • [30] Controllability, Reachability, and Stabilizability of Finite Automata: A Controllability Matrix Method
    Li, Yalu
    Dou, Wenhui
    Li, Haitao
    Liu, Xin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018