The J-matrix method

被引:25
|
作者
Ismail, Mourad E. H. [2 ,3 ]
Koelink, Erik [1 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, FNWI, NL-6525 AJ Nijmegen, Netherlands
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] King Saud Univ, Riyadh, Saudi Arabia
关键词
Tridiagonal operator; Orthogonal polynomials; Schrodinger operator with Morse potential; Lame equation; GAUSS QUADRATURE; POLYNOMIALS; CONTINUUM; SYSTEMS;
D O I
10.1016/j.aam.2010.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an operator L acting on a function space, the J-matrix method consists of finding a sequence y(n) of functions such that the operator L acts tridiagonally on y(n). Once such a tridiagonalization is obtained, a number of characteristics of the operator L can be obtained. In particular, information on eigenvalues and eigenfunctions, bound states, spectral decompositions, etc. can be obtained in this way. We discuss the general set-up and next two examples in detail; the Schrodinger operator with Morse potential and the Lame equation. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:379 / 395
页数:17
相关论文
共 50 条
  • [1] J-Matrix time propagation of atomic hydrogen in attosecond fields
    Gersbacher, Rolf
    Broad, John T.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Hybrid method (JM-ECS) combining the J-matrix and exterior complex scaling methods for scattering calculations
    Bidasyuk, Y.
    Vanroose, W.
    Broeckhove, J.
    Arickx, F.
    Vasilevsky, V.
    PHYSICAL REVIEW C, 2010, 82 (06):
  • [3] J-matrix Method for Calculations of Three-Body Coulomb Wave Functions and Cross Sections of Physical Processes
    Popov, Yu V.
    Zaytsev, S. A.
    Vinitsky, S. I.
    PHYSICS OF PARTICLES AND NUCLEI, 2011, 42 (05) : 683 - 712
  • [4] Matrix form of the Bi-CGSTAB method for solving the coupled Sylvester matrix equations
    Hajarian, Masoud
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (14): : 1828 - 1833
  • [5] THE PATTERN MATRIX METHOD
    Sherstov, Alexander A.
    SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1969 - 2000
  • [6] Eigenvalue density in Hermitian matrix models by the Lax pair method
    McLeod, J. B.
    Wang, C. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [7] The holonomic gradient method for the distribution function of the largest root of a Wishart matrix
    Hashiguchi, Hiroki
    Numata, Yasuhide
    Takayama, Nobuki
    Takemura, Akimichi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 296 - 312
  • [8] Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations
    Atabakzadeh, M. H.
    Akrami, M. H.
    Erjaee, G. H.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (20-21) : 8903 - 8911
  • [9] Novel Modulation Method for Multidirectional Matrix Converter
    Toosi, Saman
    Misron, Norhisam
    Hanamoto, Tsuyoshi
    Bin Aris, Ishak
    Radzi, Mohd Amran Mohd
    Yamada, Hiroaki
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [10] A probing method for computing the diagonal of a matrix inverse
    Tang, Jok M.
    Saad, Yousef
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (03) : 485 - 501