On guiding video object segmentation

被引:0
作者
Ortego, Diego [1 ]
McGuinness, Kevin [1 ]
SanMiguel, Juan C. [2 ]
Arazo, Eric [1 ]
Martinez, Jose M. [2 ]
O'Connor, Noel E. [1 ]
机构
[1] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland
[2] Univ Autonoma Madrid UAM, VPULab, Madrid, Spain
来源
2019 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI) | 2019年
基金
爱尔兰科学基金会;
关键词
Video object segmentation; foreground segmentation; attention; deep learning;
D O I
10.1109/cbmi.2019.8877438
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach for segmenting moving objects in unconstrained environments using guided convolutional neural networks. This guiding process relies on foreground masks from independent algorithms (i.e. state-of-the-art algorithms) to implement an attention mechanism that incorporates the spatial location of foreground and background to compute their separated representations. Our approach initially extracts two kinds of features for each frame using colour and optical flow information. Such features are combined following a multiplicative scheme to benefit from their complementarity. These unified colour and motion features are later processed to obtain the separated foreground and background representations. Then, both independent representations are concatenated and decoded to perform foreground segmentation. Experiments conducted on the challenging DAVIS 2016 dataset demonstrate that our guided representations not only outperform non-guided, but also recent and top-performing video object segmentation algorithms.
引用
收藏
页数:6
相关论文
共 37 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Measuring the Objectness of Image Windows [J].
Alexe, Bogdan ;
Deselaers, Thomas ;
Ferrari, Vittorio .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2189-2202
[3]  
[Anonymous], 2015, abs/1506.03365
[4]  
[Anonymous], 2016, IEEE WINT CONF APPL
[5]   Factors of Transferability for a Generic ConvNet Representation [J].
Azizpour, Hossein ;
Razavian, Ali Sharif ;
Sullivan, Josephine ;
Maki, Atsuto ;
Carlsson, Stefan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (09) :1790-1802
[6]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[7]   The devil is in the details: an evaluation of recent feature encoding methods [J].
Chatfield, Ken ;
Lempitsky, Victor ;
Vedaldi, Andrea ;
Zisserman, Andrew .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[8]   Learning Boundary and Appearance for Video Object Cutout [J].
Chen, Shifeng ;
Zhou, Qiang ;
Ding, Huijun .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (01) :101-104
[9]  
Faktor Alon, 2014, BMVC
[10]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034