Note on transmitted complexity for quantum dynamical systems

被引:4
作者
Watanabe, Noboru [1 ]
Muto, Masahiro [1 ]
机构
[1] Tokyo Univ Sci, Dept Informat Sci, Noda, Chiba 2788510, Japan
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 375卷 / 2106期
关键词
quantum entropy; quantum dynamical systems; Accardi; Ohya andWatanabe entropy; TOPOLOGICAL-ENTROPY; OPERATOR-ALGEBRAS; AUTOMORPHISMS; INFORMATION; CHANNELS; CAPACITY;
D O I
10.1098/rsta.2016.0396
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue 'Second quantum revolution: foundational questions'.
引用
收藏
页数:16
相关论文
共 54 条
[1]  
ACCARDI L, 1983, P ROY IRISH ACAD A, V83, P251
[2]   Compound channels, transition expectations, and liftings [J].
Accardi, L ;
Ohya, M .
APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 39 (01) :33-59
[3]  
Accardi L., 1997, Open Systems & Information Dynamics, V4, P71, DOI 10.1023/A:1009609602126
[4]  
Accardi L., 1996, Reports on Mathematical Physics, V38, P457, DOI 10.1016/S0034-4877(97)84895-1
[5]  
Accardi L., 1994, Open Syst. Inf. Dyn, V2, P337, DOI [10.1007/BF02228859, DOI 10.1007/BF02228859]
[6]  
Accardi L., 1982, Publ. Res. Inst. Math. Sci, V18, P97, DOI [10.2977/prims/1195184017, DOI 10.2977/PRIMS/1195184017]
[7]   DEFINING QUANTUM DYNAMICAL ENTROPY [J].
ALICKI, R ;
FANNES, M .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (01) :75-82
[8]  
[Anonymous], 2013, Mathematische grundlagen der quantenmechanik
[9]  
[Anonymous], 1976, Publ. Res. Inst. Math. Sci., V11, P809, DOI DOI 10.2977/PRIMS/1195191148
[10]  
Araki H., 1977, Publ. RIMS, Kyoto Univ., V13, P173, DOI [10.2977/prims/1195190105, DOI 10.2977/PRIMS/1195190105]