Notes on limits of Sobolev spaces and the continuity of interpolation scales

被引:46
作者
Milman, M [1 ]
机构
[1] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
关键词
Sobolev spaces; interpolation scales;
D O I
10.1090/S0002-9947-05-03937-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend lemmas by Bourgain-Brezis-Mironescu ( 2001), and Maz'ya-Shaposhnikova ( 2002), on limits of Sobolev spaces, to the setting of interpolation scales. This is achieved by means of establishing the continuity of real and complex interpolation scales at the end points. A connection to extrapolation theory is developed, and a new application to limits of Sobolev scales is obtained. We also give a new approach to the problem of how to recognize constant functions via Sobolev conditions.
引用
收藏
页码:3425 / 3442
页数:18
相关论文
共 33 条
[1]  
Adams R., 1975, Sobolev space
[2]  
[Anonymous], 2002, USPEKHI MAT NAUK, DOI DOI 10.4213/rm533
[3]   On sharp reiteration theorems and weighted norm inequalities [J].
Bastero, J ;
Milman, M ;
Ruiz, FJ .
STUDIA MATHEMATICA, 2000, 142 (01) :7-24
[4]  
Bennett C., 1988, PURE APPL MATH, V129
[5]  
Bergh J., 1976, INTERPOLATION SPACES
[6]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[7]  
BRUDNYL J, 1991, INTERPOLATION FUNCTO
[8]  
Calderon A.-P., 1964, Studia Math., V24, P113, DOI DOI 10.4064/SM-24-2-113-190
[9]   COMPLEX INTERPOLATION OF SOME QUASI-BANACH SPACES [J].
CWIKEL, M ;
MILMAN, M ;
SAGHER, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (03) :339-347
[10]   MONOTONICITY PROPERTIES OF INTERPOLATION SPACES [J].
CWIKEL, M .
ARKIV FOR MATEMATIK, 1976, 14 (02) :213-236