Using Ant Colony Optimization to Build Cluster-Based Classification Systems

被引:3
作者
Salama, Khalid M. [1 ]
Abdelbar, Ashraf M. [2 ]
机构
[1] Univ Kent, Sch Comp, Canterbury, Kent, England
[2] Brandon Univ, Dept Math & Comp Sci, Brandon, MB, Canada
来源
SWARM INTELLIGENCE | 2016年 / 9882卷
关键词
Ant Colony Optimization (ACO); Data mining; Classification; Clustering; Cluster-based classification system;
D O I
10.1007/978-3-319-44427-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning cluster-based classification systems is the process of partitioning a training set into data subsets (clusters), and then building a local classifier for each data cluster. The class of a new instance is predicted by first assigning the instance to its nearest cluster, and then using that cluster's local classification model to predict the instance's class. In this paper, we use the Ant Colony Optimization (ACO) meta-heuristic to optimize the data clusters based on a given classification algorithm in an integrated cluster-with-learn manner. The proposed ACO algorithms use two different clustering solution representation approaches: instance-based and me doi d-based, where in the latter the number of clusters is optimized as part of the ACO algorithm's execution. In our experiments, we employ three widely-used classification algorithms, k-nearest neighbours, Ripper, and C4.5, and evaluate performance on 30 UCI benchmark datasets. We compare the ACO results to the traditional c-means clustering algorithm, where the data clusters are built prior to learning the local classifiers.
引用
收藏
页码:210 / 222
页数:13
相关论文
共 28 条
  • [1] Abdelbar A. M, 2016, LNCS, V9882, P210
  • [2] [Anonymous], 2004, ANT COLONY OPTIMIZAT
  • [3] [Anonymous], 2009, Clustering
  • [4] Gan G, 2007, ASA SIAM SER STAT AP, V20, P1, DOI 10.1137/1.9780898718348
  • [5] Jafar O.A., 2010, International journal of computer theory and engineering, V2, P787, DOI DOI 10.7763/IJCTE.2010.V2.242
  • [6] Ant Colony Optimization for Mixed-Variable Optimization Problems
    Liao, Tianjun
    Socha, Krzysztof
    de Oca, Marco A. Montes
    Stuetzle, Thomas
    Dorigo, Marco
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) : 503 - 518
  • [7] An Effective Clustering Algorithm With Ant Colony
    Liu, Xiaoyong
    Fu, Hui
    [J]. JOURNAL OF COMPUTERS, 2010, 5 (04) : 598 - 605
  • [8] Classification with ant colony optimization
    Martens, David
    De Backer, Manu
    Haesen, Raf
    Vanthienen, Jan
    Snoeck, Monique
    Baesens, Bart
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (05) : 651 - 665
  • [9] Editorial survey: swarm intelligence for data mining
    Martens, David
    Baesens, Bart
    Fawcett, Tom
    [J]. MACHINE LEARNING, 2011, 82 (01) : 1 - 42
  • [10] A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms
    Otero, Fernando E. B.
    Freitas, Alex A.
    Johnson, Colin G.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (01) : 64 - 76