Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery

被引:753
|
作者
Park, JH
Allen, MG
Prausnitz, MR [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Georgia Tech & Emory Univ, Wallace H Coulter Dept Biomed Engn, Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
microneedle; transdermal drug delivery; biodegradable polymer; failure force;
D O I
10.1016/j.jconrel.2005.02.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To overcome the skin's barrier properties that block transdermal delivery of most drugs, arrays of microscopic needles have been microfabricated primarily out of silicon or metal. This study addresses microneedles made of biocompatible and biodegradable polymers, which are expected to improve safety and manufacturability. To make biodegradable polymer microneedles with sharp tips, micro-electromechanical masking and etching were adapted to produce beveled- and chisel-tip microneedles and a new fabrication method was developed to produce tapered-cone microneedles using an in situ lens-based lithographic approach. To replicate microfabricated master structures, PDMS micromolds were generated and a novel vacuum-based method was developed to fill the molds with polylactic acid, polyglycolic acid, and their co-polymers. Mechanical testing of the resulting needles measured the force at which needles broke during axial loading and found that this failure force increased with Young's modulus of the material and needle base diameter and decreased with needle length. Failure forces were generally much larger than the forces needed to insert microneedles into skin, indicating that biodegradable polymers can have satisfactory mechanical properties for microneedles. Finally, arrays of polymer microneedles were shown to increase permeability of human cadaver skin to a low-molecular weight tracer, calcein, and a macromolecular protein, bovine serum albumin, by up to three orders of magnitude. Altogether, these results indicate that biodegradable polymer microneedles can be fabricated with an appropriate geometry and sufficient strength to insert into skin, and thereby dramatically increase transdermal transport of molecules. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [1] Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery
    Park, JH
    Allen, MG
    Prausnitz, MR
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 2654 - 2657
  • [2] Fabrication of coated polymer microneedles for transdermal drug delivery
    Chen, Yang
    Chen, Bo Zhi
    Wang, Qi Lei
    Jin, Xuan
    Guo, Xin Dong
    JOURNAL OF CONTROLLED RELEASE, 2017, 265 : 14 - 21
  • [3] Polymer microneedles for transdermal drug delivery
    Lee, Jeong Woo
    Han, Mee-Ree
    Park, Jung-Hwan
    JOURNAL OF DRUG TARGETING, 2013, 21 (03) : 211 - 223
  • [4] Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery
    Luo, Zhimin
    Sun, Wujin
    Fang, Jun
    Lee, KangJu
    Li, Song
    Gu, Zhen
    Dokmeci, Mehmet R.
    Khademhosseini, Ali
    ADVANCED HEALTHCARE MATERIALS, 2019, 8 (03)
  • [5] Microneedles for intradermal and transdermal drug delivery
    Tuan-Mahmood, Tuan-Mazlelaa
    McCrudden, Maeliosa T. C.
    Torrisi, Barbara M.
    McAlister, Emma
    Garland, Martin J.
    Singh, Thakur Raghu Raj
    Donnelly, Ryan F.
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2013, 50 (05) : 623 - 637
  • [6] Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications
    Martin, C. J.
    Allender, C. J.
    Brain, K. R.
    Morrissey, A.
    Birchall, J. C.
    JOURNAL OF CONTROLLED RELEASE, 2012, 158 (01) : 93 - 101
  • [7] Progress of Polymer Microneedles on Transdermal Drug Delivery
    Zeng, Zhi-yong
    Jiang, Guo-hua
    Liu, Tian-qi
    Zhang, Xue-ya
    Sun, Yan-fang
    ACTA POLYMERICA SINICA, 2022, 53 (08): : 876 - 893
  • [8] High Strength, Polymer Microneedles For Transdermal Drug Delivery
    Chaudhri, B. Paul
    Ceyssens, F.
    Guan, T.
    La Manna, A.
    Neves, H. Pereira
    Van Hoof, C.
    Puers, R.
    EUROSENSORS XXV, 2011, 25
  • [9] Dissolving microneedles for transdermal drug delivery
    Lee, Jeong W.
    Park, Jung-Hwan
    Prausnitz, Mark R.
    BIOMATERIALS, 2008, 29 (13) : 2113 - 2124
  • [10] Fabrication and characterization of dissolving microneedles for transdermal drug delivery of allopurinol
    Chen, Jianmin
    Liu, Xinying
    Liu, Siwan
    He, Zemin
    Yu, Sijin
    Ruan, Zhipeng
    Jin, Nan
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2021, 47 (10) : 1578 - 1586