Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery

被引:751
|
作者
Park, JH
Allen, MG
Prausnitz, MR [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Georgia Tech & Emory Univ, Wallace H Coulter Dept Biomed Engn, Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
microneedle; transdermal drug delivery; biodegradable polymer; failure force;
D O I
10.1016/j.jconrel.2005.02.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To overcome the skin's barrier properties that block transdermal delivery of most drugs, arrays of microscopic needles have been microfabricated primarily out of silicon or metal. This study addresses microneedles made of biocompatible and biodegradable polymers, which are expected to improve safety and manufacturability. To make biodegradable polymer microneedles with sharp tips, micro-electromechanical masking and etching were adapted to produce beveled- and chisel-tip microneedles and a new fabrication method was developed to produce tapered-cone microneedles using an in situ lens-based lithographic approach. To replicate microfabricated master structures, PDMS micromolds were generated and a novel vacuum-based method was developed to fill the molds with polylactic acid, polyglycolic acid, and their co-polymers. Mechanical testing of the resulting needles measured the force at which needles broke during axial loading and found that this failure force increased with Young's modulus of the material and needle base diameter and decreased with needle length. Failure forces were generally much larger than the forces needed to insert microneedles into skin, indicating that biodegradable polymers can have satisfactory mechanical properties for microneedles. Finally, arrays of polymer microneedles were shown to increase permeability of human cadaver skin to a low-molecular weight tracer, calcein, and a macromolecular protein, bovine serum albumin, by up to three orders of magnitude. Altogether, these results indicate that biodegradable polymer microneedles can be fabricated with an appropriate geometry and sufficient strength to insert into skin, and thereby dramatically increase transdermal transport of molecules. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [1] Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery
    Park, JH
    Allen, MG
    Prausnitz, MR
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 2654 - 2657
  • [2] Fabrication and testing of polymer microneedles for transdermal drug delivery
    Ebrahiminejad, Vahid
    Rad, Zahra Faraji
    Prewett, Philip D.
    Davies, Graham J.
    Beilstein Journal of Nanotechnology, 2022, 13 : 629 - 640
  • [3] Fabrication of coated polymer microneedles for transdermal drug delivery
    Chen, Yang
    Chen, Bo Zhi
    Wang, Qi Lei
    Jin, Xuan
    Guo, Xin Dong
    JOURNAL OF CONTROLLED RELEASE, 2017, 265 : 14 - 21
  • [4] Fabrication and testing of polymer microneedles for transdermal drug delivery
    Ebrahiminejad, Vahid
    Rad, Zahra Faraji
    Prewett, Philip D.
    Davies, Graham J.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 629 - 640
  • [5] Polymer microneedles for transdermal drug delivery
    Lee, Jeong Woo
    Han, Mee-Ree
    Park, Jung-Hwan
    JOURNAL OF DRUG TARGETING, 2013, 21 (03) : 211 - 223
  • [6] Biodegradable 3D printed polymer microneedles for transdermal drug delivery
    Luzuriaga, Michael A.
    Berry, Danielle R.
    Reagan, John C.
    Smaldone, Ronald A.
    Gassensmith, Jeremiah J.
    LAB ON A CHIP, 2018, 18 (08) : 1223 - 1230
  • [7] Fabrication of polystyrene microneedles for transdermal drug delivery
    Luangweera, W.
    Jiruedee, S.
    Pimpin, A.
    Rattanasumawong, C.
    Palaga, T.
    Srituravanich, W.
    Patoomvasna, K.
    Sookyu, B.
    COMPUTING, CONTROL, INFORMATION AND EDUCATION ENGINEERING, 2015, : 741 - 744
  • [8] Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery
    Luo, Zhimin
    Sun, Wujin
    Fang, Jun
    Lee, KangJu
    Li, Song
    Gu, Zhen
    Dokmeci, Mehmet R.
    Khademhosseini, Ali
    ADVANCED HEALTHCARE MATERIALS, 2019, 8 (03)
  • [9] Microneedles array with biodegradable tips for transdermal drug delivery
    Iliescu, Ciprian
    Chen, Bangtao
    Wei, Jiashen
    Tay, Francis E. H.
    BIOMEDICAL APPLICATIONS OF MICRO- AND NANOENGINEERING IV AND COMPLEX SYSTEMS, 2008, 7270
  • [10] An Emerging Transdermal Drug Delivery System: Fabrication and Characterization of Natural and Biodegradable Polymeric Microneedles Transdermal Patch
    Lall, Deepesh
    Naim, Mohd Javed
    Rathore, Shruti
    JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2021, 33 (35B) : 46 - 54