Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state

被引:154
作者
Knysh, Sergey [1 ]
Smelyanskiy, Vadim N. [1 ]
Durkin, Gabriel A. [1 ]
机构
[1] NASA, Quantum Lab, Appl Phys Ctr, Ames Res Ctr, Moffett Field, CA 94035 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 02期
关键词
NOISE;
D O I
10.1103/PhysRevA.83.021804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase precision in optimal two-channel quantum interferometry is studied in the limit of large photon number N >> 1, for losses occurring in either one or both channels. For losses in one channel an optimal state undergoes an intriguing sequence of local bifurcations as the number of photons (or losses) increase. The optimal state has a continuous form in the Fock state basis for large N. The loss parameter limits any precision improvement over classical light to at most a constant factor independent of N. We determine a crossover value of photon number N-c beyond which supraclassical precision is progressively lost.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Phase estimation for thermal Gaussian states [J].
Aspachs, M. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. .
PHYSICAL REVIEW A, 2009, 79 (03)
[2]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[3]   Reduction of optimum light power with Heisenberg-limited photon-counting noise in interferometric gravitational-wave detectors [J].
Brif, C .
PHYSICS LETTERS A, 1999, 263 (1-2) :15-20
[4]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[5]   The entanglement and phase measurement performance of the damped NOON state [J].
Chen, Xiao-yu ;
Jiang, Li-zhen .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (14) :2799-2808
[6]   Quantum phase estimation with lossy interferometers [J].
Demkowicz-Dobrzanski, R. ;
Dorner, U. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW A, 2009, 80 (01)
[7]   Optimal Quantum Phase Estimation [J].
Dorner, U. ;
Demkowicz-Dobrzanski, R. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[8]   Quantum optical metrology - the lowdown on high-N00N states [J].
Dowling, Jonathan P. .
CONTEMPORARY PHYSICS, 2008, 49 (02) :125-143
[9]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336
[10]   INTERFEROMETRIC DETECTION OF OPTICAL-PHASE SHIFTS AT THE HEISENBERG LIMIT [J].
HOLLAND, MJ ;
BURNETT, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1355-1358