Reshaping Arnold Tongues

被引:0
|
作者
Moreno-Ahedo, Luis [1 ]
Collado, Joaquin [1 ]
机构
[1] IPN, CINVESTAV, Dept Automat Control, Mexico City 07738, DF, Mexico
来源
2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATION CONTROL (CCE 2009) | 2009年
关键词
EQUATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given the Hill's equation x + (alpha + beta p(t)t)x = 0, where alpha and beta are parameters and p(t) is periodic. The Arnold's tongues are the unstable regions in the alpha-beta plane where the solutions of the Hill's equation are unbounded. We shall present some results about the reshaping of the Arnold's tongues varying p(t) by (p) over bar (t) = eta(p(t) + gamma f(t)) where the term gamma f(t) acts as control parameter. We shall present the results for the Mathieu's equation.
引用
收藏
页码:307 / 311
页数:5
相关论文
共 50 条
  • [1] Scaling of the Arnold tongues
    Ecke, Robert E.
    Farmer, J. Doyne
    Umberger, David K.
    NONLINEARITY, 1989, 2 (02) : 175 - 196
  • [2] Intermingled fractal Arnold tongues
    Paar, V
    Pavin, N
    PHYSICAL REVIEW E, 1998, 57 (02): : 1544 - 1549
  • [3] Arnold tongues in a microfluidic drop emitter
    Willaime, H
    Barbier, V
    Kloul, L
    Maine, S
    Tabeling, P
    PHYSICAL REVIEW LETTERS, 2006, 96 (05)
  • [4] ARNOLD TONGUES FOR BIFURCATION FROM INFINITY
    Kozyakin, Victor S.
    Krasnosel'skii, Alexander M.
    Rachinskii, Dmitri, I
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (01): : 107 - 116
  • [5] Arnold tongues in human cardiorespiratory systems
    McGuinness, M
    Hong, Y
    Galletly, D
    Larsen, P
    CHAOS, 2004, 14 (01) : 1 - 6
  • [6] Asymptotics of the Arnold Tongues in problems at infinity
    Kozyakin, Victor
    Krasnosel'skii, Alexander
    Rachinskii, Dmitrii
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 20 (04) : 989 - 1011
  • [7] LOCALIZATION OF ARNOLD TONGUES OF DISCRETE DYNAMICAL SYSTEMS
    Yumagulov, M. G.
    UFA MATHEMATICAL JOURNAL, 2013, 5 (02): : 109 - 130
  • [8] Renormalization of circle maps and smoothness of Arnold tongues
    Goncharuk, Nataliya
    Yampolsky, Michael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025,
  • [9] Three-dimensional tori and Arnold tongues
    Sekikawa, Munehisa
    Inaba, Naohiko
    Kamiyama, Kyohei
    Aihara, Kazuyuki
    CHAOS, 2014, 24 (01)
  • [10] Arnold Tongues in Area-Preserving Maps
    Levi, Mark
    Zhou, Jing
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (03)