Enhancing the dipolar coupling of a S-T0 qubit with a transverse sweet spot

被引:20
作者
Abadillo-Uriel, J. C. [1 ]
Eriksson, M. A. [1 ]
Coppersmith, S. N. [1 ,2 ]
Friesen, Mark [1 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[2] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
关键词
QUANTUM-DOT; SPIN; COHERENCE; FIDELITY; GATE;
D O I
10.1038/s41467-019-13548-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental challenge for quantum dot spin qubits is to extend the strength and range of qubit interactions while suppressing their coupling to the environment, since both effects have electrical origins. Key tools include the ability to take advantage of physical resources in different regimes, and to access optimal working points, sweet spots, where dephasing is minimized. Here, we explore an important resource for singlet-triplet qubits: a transverse sweet spot (TSS) that enables transitions between qubit states, a strong dipolar coupling, and leading-order protection from electrical fluctuations. Of particular interest is the possibility of transitioning between the TSS and symmetric operating points while remaining continuously protected. This arrangement is ideal for coupling qubits to a microwave cavity, because it combines tunability of the coupling with noise insensitivity. We perform simulations with 1/f-type electrical noise, demonstrating that two-qubit gates mediated by a resonator can achieve fidelities >99% under realistic conditions.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Cavity QED with Magnetically Coupled Collective Spin States [J].
Amsuess, R. ;
Koller, Ch. ;
Noebauer, T. ;
Putz, S. ;
Rotter, S. ;
Sandner, K. ;
Schneider, S. ;
Schramboeck, M. ;
Steinhauser, G. ;
Ritsch, H. ;
Schmiedmayer, J. ;
Majer, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[2]  
[Anonymous], ARXIVCONDMAT0605144
[3]   Input-output theory for spin-photon coupling in Si double quantum dots [J].
Benito, M. ;
Mi, X. ;
Taylor, J. M. ;
Petta, J. R. ;
Burkard, Guido .
PHYSICAL REVIEW B, 2017, 96 (23)
[4]   Quantum Manipulation of Two-Electron Spin States in Isolated Double Quantum Dots [J].
Bertrand, Benoit ;
Flentje, Hanno ;
Takada, Shintaro ;
Yamamoto, Michihisa ;
Tarucha, Seigo ;
Ludwig, Arne ;
Wieck, Andreas D. ;
Baeuerle, Christopher ;
Meunier, Tristan .
PHYSICAL REVIEW LETTERS, 2015, 115 (09)
[5]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[6]   Coupled quantum dots as quantum gates [J].
Burkard, G ;
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW B, 1999, 59 (03) :2070-2078
[7]   Ultra-long-distance interaction between spin qubits [J].
Burkard, Guido ;
Imamoglu, Atac .
PHYSICAL REVIEW B, 2006, 74 (04)
[8]   Single-spin manipulation in a double quantum dot in the field of a micromagnet [J].
Chesi, Stefano ;
Wang, Ying-Dan ;
Yoneda, Jun ;
Otsuka, Tomohiro ;
Tarucha, Seigo ;
Loss, Daniel .
PHYSICAL REVIEW B, 2014, 90 (23)
[9]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[10]   Electron Spin Resonance at the Level of 104 Spins Using Low Impedance Superconducting Resonators [J].
Eichler, C. ;
Sigillito, A. J. ;
Lyon, S. A. ;
Petta, J. R. .
PHYSICAL REVIEW LETTERS, 2017, 118 (03)