On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval

被引:43
作者
Buterin, S. A. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Math, Saratov 410012, Russia
关键词
non-selfadjoint Sturm-Liouville operators; inverse spectral problems; method of spectral mappings; generalized weight numbers;
D O I
10.1016/j.jmaa.2007.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inverse spectral problem is studied for a non-selfadjoint Sturm-Liouville operator on a finite interval with an arbitrary behavior of the spectrum. The spectral data introduced generalize the classical discrete spectral data corresponding to the specification of the spectral function in the selfadjoint case. The connection with other types of spectral characteristics is investigated and a uniqueness theorem is proved. A constructive procedure for solving the inverse problem is given. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:739 / 749
页数:11
相关论文
共 12 条
[2]   A local Borg-Marchenko theorem for complex potentials [J].
Brown, BM ;
Peacock, RA ;
Weikard, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :115-131
[3]  
BUTERIN SA, 2000, MATEMATIKA MEKHANIKA, V3, P10
[4]  
Conway JB., 1995, Functions of One Complex Variable, VI
[5]  
Freiling G., 2001, INVERSE STURM LIOUVI
[6]  
Gesztesy F, 2000, COMMUN MATH PHYS, V211, P271
[7]   Uniqueness theorems in inverse spectral theory for one-dimensional Schrodinger operators [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :349-373
[8]  
Levitan B. M., 1984, Inverse Sturm-Liouville Problems
[9]  
Marchenko V., 1986, STURM LIOUVILLE OPER
[10]  
MARCHENKO VA, 1950, DOKL AKAD NAUK SSSR+, V72, P457