Storage and Dissipation of Energy in Prabhakar Viscoelasticity

被引:21
作者
Colombaro, Ivano [1 ]
Giusti, Andrea [2 ,3 ,4 ]
Vitali, Silvia [2 ]
机构
[1] Univ Pompeu Fabra, Dept Informat & Commun Technol, C Roc Boronat 138, Barcelona 08018, Spain
[2] Univ Bologna, Dept Phys & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[3] INFN, Sez Bologna, Via B Pichat 6-2, I-40127 Bologna, Italy
[4] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr, Theresienstr 37, D-80333 Munich, Germany
关键词
Prabhakar viscoelasticity; Q-factor; fractional calculus; Mittag-Leffler functions; Prabhakar function; Integral transforms; WAVE-PROPAGATION; RELAXATION; REPRESENTATION; EQUATIONS;
D O I
10.3390/math6020015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, after a brief review of the physical notion of quality factor in viscoelasticity, we present a complete discussion of the attenuation processes emerging in the Maxwell-Prabhakar model, recently developed by Giusti and Colombaro. Then, taking profit of some illuminating plots, we discuss some potential connections between the presented model and the modern mathematical modelling of seismic processes.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
[Anonymous], ARXIV 2017 1710 0685
[2]  
[Anonymous], 2016, SERIES THEM CONVERGE
[3]  
Borcherdt R.D., 2009, Viscoelastic Waves in Layered Media
[4]   Time-domain modeling of constant-Q seismic waves using fractional derivatives [J].
Carcione, JM ;
Cavallini, F ;
Mainardi, F ;
Hanyga, A .
PURE AND APPLIED GEOPHYSICS, 2002, 159 (7-8) :1719-1736
[5]   On transient waves in linear viscoelasticity [J].
Colombaro, Ivano ;
Giusti, Andrea ;
Mainardi, Francesco .
WAVE MOTION, 2017, 74 :191-212
[6]   On the propagation of transient waves in a viscoelastic Bessel medium [J].
Colombaro, Ivano ;
Giusti, Andrea ;
Mainardi, Francesco .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[7]   A class of linear viscoelastic models based on Bessel functions [J].
Colombaro, Ivano ;
Giusti, Andrea ;
Mainardi, Francesco .
MECCANICA, 2017, 52 (4-5) :825-832
[8]   FRACTIONAL DIFFUSION-TELEGRAPH EQUATIONS AND THEIR ASSOCIATED STOCHASTIC SOLUTIONS [J].
D'Ovidio, M. ;
Polito, F. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (04) :552-574
[9]   Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics [J].
de Oliveira, E. Capelas ;
Mainardi, F. ;
Vaz, J., Jr. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :161-171
[10]   Unexpected viscoelastic deformation of tight sandstone: Insights and predictions from the fractional Maxwell model [J].
Ding, Xiang ;
Zhang, Guangqing ;
Zhao, Bo ;
Wang, Yan .
SCIENTIFIC REPORTS, 2017, 7