Fractional - Order Chaotic Systems

被引:0
|
作者
Petras, Ivo [1 ]
Bednarova, Dagmar [1 ]
机构
[1] Tech Univ Kosice, Inst Control & Informatizat Prod Proc, BERG Fac, Kosice 04200, Slovakia
关键词
FREQUENCY-DOMAIN APPROXIMATION; STABILITY ANALYSIS; SYNCHRONIZATION; HYPERCHAOS; CALCULUS; DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution deals with the fractional-order chaotic systems. A survey of the chaotic systems, where total order of the system is less than 3 is presented. With using a fractional derivative a chaos can be observed in such system in spite of usual notation that chaos can occur in system with order 3 and more. A numerical method for strange attractors computation is presented as well.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [2] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [3] Synchronization of fractional order chaotic systems
    Peng, Guojun
    PHYSICS LETTERS A, 2007, 363 (5-6) : 426 - 432
  • [4] Fractional Order Chaotic Systems: A Survey
    Gupta, Sangeeta
    Srivastava, Smriti
    Varshney, Pragya
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 1109 - 1113
  • [5] Synchronization of fractional order chaotic systems
    Li, CG
    Liao, XF
    Yu, JB
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [6] CONTROL OF FRACTIONAL ORDER CHAOTIC SYSTEMS
    Gai-yun, Wang
    Yi, Chen
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 535 - 538
  • [7] Chaotic synchronization for a class of fractional-order chaotic systems
    Zhou Ping
    CHINESE PHYSICS, 2007, 16 (05): : 1263 - 1266
  • [8] Chaotic synchronization for a class of fractional-order chaotic systems
    Institute for Nonlinear Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    Chin. Phys., 2007, 5 (1263-1266):
  • [9] Robust Fractional Order Controller for Chaotic Systems
    Boudjehem, Djalil
    Boudjehem, Badreddine
    IFAC PAPERSONLINE, 2016, 49 (09): : 175 - 179
  • [10] GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS
    Wang Ming-Jun
    Wang Xing-Yuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (09): : 1283 - 1292