Master field on a fuzzy sphere

被引:3
作者
Kuroki, T [1 ]
机构
[1] Univ Tokyo, Inst Phys, Meguro Ku, Tokyo 153, Japan
关键词
master field; non-commutative geometry; fuzzy sphere; vector model;
D O I
10.1016/S0550-3213(98)00815-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The O(N)-invariant held theory is considered on both an ordinary and a non-commutative sphere (fuzzy sphere). It is shown that in both cases large-N dominant fields (master fields) exist and their explicit forms are presented. They are found to mix the internal symmetry and the (fuzzy) space-time symmetry. It is also argued that the cutoff introduced by the fuzzy sphere plays an essential role in constructing the master field. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:466 / 484
页数:19
相关论文
共 44 条
[1]  
[Anonymous], HEPTH9711162
[2]   Holomorphic quantization on the torus and finite quantum mechanics [J].
Athanasiu, GG ;
Floratos, EG ;
Nicolis, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21) :6737-6745
[3]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[4]  
BANKS T, HEPTH9710231
[5]  
BANKS T, HEPTH9706168
[6]   STRINGS FROM REDUCED LARGE-N GAUGE-THEORY VIA AREA PRESERVING DIFFEOMORPHISMS [J].
BARS, I .
PHYSICS LETTERS B, 1990, 245 (01) :35-42
[7]   THE QUENCHED EGUCHI-KAWAI MODEL [J].
BHANOT, G ;
HELLER, UM ;
NEUBERGER, H .
PHYSICS LETTERS B, 1982, 113 (01) :47-50
[8]  
BIGATTI D, HEPTH9712072, P9
[9]  
CHEPELEV I, HEPTH9705120
[10]  
Connes A., 1994, NONCOMMUTATIVE GEOME