Nanostructured Wire-in-Plate Electrocatalyst for High-Durability Production of Hydrogen and Nitrogen from Alkaline Ammonia Solution

被引:54
作者
Huang, Jingjing [1 ,2 ]
Cai, Jinmeng [1 ,2 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Westlake Univ, Key Lab 3D Micro Nano Fabricat & Characterizat Zh, Sch Engn, Hangzhou 310024, Peoples R China
[2] Westlake Inst Adv Study, Inst Adv Technol, Hangzhou 310024, Peoples R China
关键词
ammonia oxidation reaction; copper-nickel nanocomposite; electrocatalysis; hydrogen energy; long-term stability; ELECTROCHEMICAL OXIDATION; FUEL-CELL; COPPER; PERFORMANCE;
D O I
10.1021/acsaem.9b02545
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic oxidation of ammonia provides a potential solution for on-board hydrogen supply for a fuel-cell vehicle. However, the lack of active, stable, and low-cost electrocatalysts restricts its application. Herein, we report a nanostructured catalyst of Cu2O wire-in-Ni(OH)(2) plate passivated by a thin CuO surface, which can stably electrolyze alkaline ammonia solution into hydrogen and nitrogen at a high current density of 80 mA cm(-2) at room temperature. The improved performance is ascribed to the peculiar wire-in-plate nanostructure, which not only enhances the catalytic activity via a Ni-Cu synergistic interaction but also protects Cu2O from oxidation and dissolution in the electrolyte.
引用
收藏
页码:4108 / 4113
页数:6
相关论文
共 30 条
[1]   Review-Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells [J].
Adli, Nadia Mohd ;
Zhang, Hao ;
Mukherjee, Shreya ;
Wu, Gang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (15) :J3130-J3147
[2]   Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts [J].
Assumpcao, Monica H. M. T. ;
da Silva, Sirlane G. ;
de Souza, Rodrigo F. B. ;
Buzzo, Guilherme S. ;
Spinace, Estevam V. ;
Neto, Almir O. ;
Silva, Julio Cesar M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) :5148-5152
[3]   On-board hydrogen storage and production: An application of ammonia electrolysis [J].
Boggs, Bryan K. ;
Botte, Gerardine G. .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :573-581
[4]   Mechanism of electrochemical oxidation of ammonia [J].
Bunce, Nigel J. ;
Bejan, Dorin .
ELECTROCHIMICA ACTA, 2011, 56 (24) :8085-8093
[5]   AN INVESTIGATION OF THE ANODIC BEHAVIOR OF COPPER AND ITS ANODICALLY PRODUCED OXIDES IN AQUEOUS-SOLUTIONS OF HIGH PH [J].
BURKE, LD ;
AHERN, MJG ;
RYAN, TG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (02) :553-561
[6]   Economics of converting renewable power to hydrogen [J].
Glenk, Gunther ;
Reichelstein, Stefan .
NATURE ENERGY, 2019, 4 (03) :216-222
[7]   Hydrogen generation by electrolysis of liquid ammonia [J].
Hanada, Nobuko ;
Hino, Satoshi ;
Ichikawa, Takayuki ;
Suzuki, Hiroshi ;
Takai, Kenichi ;
Kojima, Yoshitsugu .
CHEMICAL COMMUNICATIONS, 2010, 46 (41) :7775-7777
[8]   Electrocatalytic Oxidation of Ammonia on Transition-Metal Surfaces: A First-Principles Study [J].
Herron, Jeffrey A. ;
Ferrin, Peter ;
Mavrikakis, Manos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (26) :14692-14701
[9]   Technical assessment of compressed hydrogen storage tank systems for automotive applications [J].
Hua, T. Q. ;
Ahluwalia, R. K. ;
Peng, J. -K. ;
Kromer, M. ;
Lasher, S. ;
McKenney, K. ;
Law, K. ;
Sinha, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) :3037-3049
[10]   Perovskites in catalysis and electrocatalysis [J].
Hwang, Jonathan ;
Rao, Reshma R. ;
Giordano, Livia ;
Katayama, Yu ;
Yu, Yang ;
Shao-Horn, Yang .
SCIENCE, 2017, 358 (6364) :751-756