Exp-function method for solving nonlinear evolution equations with higher order nonlinearity

被引:57
作者
Gurefe, Yusuf [1 ]
Misirli, Emine [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35100 Bornova, Turkey
关键词
Exp-function method; Generalized (2+1)-dimensional Burgers-type equation; Generalized Drinfel'd-Sokolov-Wilson system; Periodic solution; F-EXPANSION METHOD; WAVE;
D O I
10.1016/j.camwa.2010.08.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Exp-function method is used to obtain generalized solitary solutions of the generalized Drinfel'd-Sokolov-Wilson (DSW) system and the generalized (2 + 1)-dimensional Burgers-type equation. Then, some of the solitary solutions are converted to periodic solutions or hyperbolic function solutions by a simple transformation. The results show that the Exp-function method is a powerful and convenient mathematical tool for solving nonlinear evolution equations with higher order nonlinearity. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2025 / 2030
页数:6
相关论文
共 30 条
[1]  
Ariel P. D., 2010, NONLINEAR SCI LETT A, V1, P43
[2]   Application of the Exp-function method for nonlinear differential-difference equations [J].
Bekir, Ahmet .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (11) :4049-4053
[3]   Application of Exp-function method for (3+1)-dimensional nonlinear evolution equations [J].
Boz, Ahmet ;
Bekir, Ahmet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) :1451-1456
[4]   Application of He's Exp-function Method to the Stochastic mKdV Equation [J].
Dai, Chao-Qing ;
Zhang, Jie-Fang .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (05) :675-680
[5]  
Dai ZD., 2010, Nonlinear Sci. Lett. A, V1, P77
[6]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392
[7]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[8]  
Fu HM, 2009, INT J NONLIN SCI NUM, V10, P927
[9]  
Golbabai A., 2010, NONLINEAR SCI LETT A, V1, P147
[10]   Exact Solutions for the Generalized BBM Equation with Variable Coefficients [J].
Gomez, Cesar A. ;
Salas, Alvaro H. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010