Coarse-grained molecular modeling of composite interfaces

被引:2
|
作者
Tan, VBC [1 ]
Deng, M [1 ]
Tay, TE [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
composite interfaces; crosslink adhesion; molecular modeling; coarse-grained molecular dynamics; AUTOMATIC SIMPLEX OPTIMIZATION; FIT STRUCTURAL-PROPERTIES; SPRING POLYMER MELTS; DYNAMICS SIMULATIONS; FORCE-FIELD; BOND-LENGTH; ADHESION; SURFACE; POLYCARBONATE; POTENTIALS;
D O I
10.4028/www.scientific.net/MSF.502.39
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interface of fiber and matrix strongly influences the performance and strength of pp fiber-reinforced composite materials. Due to the limitations of continuum mechanics at the nanometer length scale, atomistic level computer simulation has started to play an important role in pp the understanding of such interfacial systems. Our study focuses on a typical crosslinked interfacial pp system of glass-epoxy composite with the presence of silanes. To explore the mechanical properties IF of the interfacial network system, Coarse-grained Molecular Dynamics is used. Currently it is not possible to study mechanical properties of interfacial systems purely through ab initio molecular dynamics simulations because of the huge computational resources required. Although pure atomistic classical molecular dynamics simulations have been used to study systems comprising billions of atoms, classical MD simulation do not take into account the effects of crosslinking of molecular chains. A new force field, which combines the Lennard-Jones potential and a finite-extensible nonlinear elastic attractive potential, is proposed and incorporated in a bead-spring model to simulate glass/epoxy interfacial system with the crosslinked structure of silanes. The finite-extensible nonlinear elastic attractive potential is included to control the motion and breakage of polymer chains. Interfacial adhesion and mechanical properties were studied through the JE simulation of mechanically separating the interfacial system.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 50 条
  • [21] Coarse-Grained Modeling of RNA for Biology and Nanotechnology
    Sulc, Petr
    Romano, Flavio
    Ouldridge, Thomas
    Doye, Jonathan
    Louis, Ard
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 369A - 369A
  • [22] Multiscale Modeling of Coarse-Grained Macromolecular Liquids
    McCarty, J.
    Lyubimov, I. Y.
    Guenza, M. G.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (35): : 11876 - 11886
  • [23] Coarse-grained modeling of micelle/protein complexes
    Benz, RW
    Tobias, DJ
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 77A - 77A
  • [24] Coarse-Grained Ions for Nucleic Acid Modeling
    Hinckley, Daniel M.
    de Pablo, Juan J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (11) : 5436 - 5446
  • [25] COARSE-GRAINED MODELING OF PROTEIN UNFOLDING DYNAMICS
    Deng, Mingge
    Karniadakis, George Em
    MULTISCALE MODELING & SIMULATION, 2014, 12 (01): : 109 - 118
  • [26] Coarse-grained modeling of DNA and DNA nanotechnology
    Ouldridge, Thomas E.
    Sulc, Petr
    Romano, Flavio
    Louis, Adriaan A.
    Doye, Jonathan P. K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [27] Recent successes in coarse-grained modeling of DNA
    Potoyan, Davit A.
    Savelyev, Alexey
    Papoian, Garegin A.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2013, 3 (01) : 69 - 83
  • [28] Modeling Chromatin Condensation with Coarse-Grained Models
    Lebold, Kathryn M.
    Best, Robert B.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 214A - 214A
  • [29] Coarse-grained modeling of supported and tethered bilayers
    Faller, R.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2013, 42 : S121 - S121
  • [30] Coarse-grained modeling of multiphase interactions at microscale
    Huang, Pengyu
    Shen, Luming
    Gan, Yixiang
    Nguyen, Giang D.
    El-Zein, Abbas
    Maggi, Federico
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (12):