Application of resolution of identity approximation of second-order Moller-Plesset perturbation theory to three-body fragment molecular orbital method

被引:13
|
作者
Katouda, Michio [1 ]
机构
[1] Natl Inst Nat Sci, Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan
关键词
Three-body fragment molecular orbital method; Resolution of identity approximation; Second-order Moller-Plesset perturbation theory; RI-MP2; Density fitting MP2; PARALLEL ALGORITHM; BASIS-SETS; MP2;
D O I
10.1007/s00214-011-1021-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The resolution of identity (RI) approximation of second-order Moller-Plesset perturbation (MP2) theory, termed as RI-MP2, is applied to three-body fragment molecular orbital (FMO3) method. New implementation of FMO3 RI-MP2 is developed based on an efficient parallel RI-MP2 code developed recently in our group. Using this new implementation, the accuracy and computational time of FMO3 RI-MP2 calculations are assessed for water clusters, polyalanines, and proteins. The errors arising from RI-MP2 are sufficiently small in the FMO3 MP2 calculations that they give quantitative accuracy for practical chemical applications. Considerable time savings are attained in the FMO3 MP2 calculations with the application of RI-MP2.
引用
收藏
页码:449 / 453
页数:5
相关论文
共 50 条
  • [21] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193
  • [22] Application of Gaussian-type geminals in local second-order Moller-Plesset perturbation theory
    Polly, Robert
    Werner, Hans-Joachim
    Dahle, Pal
    Taylor, Peter R.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (23):
  • [23] An approximate second-order Moller-Plesset perturbation approach for large molecular calculations
    Nakajima, Takahito
    Hirao, Kimihiko
    CHEMICAL PHYSICS LETTERS, 2006, 427 (1-3) : 225 - 229
  • [24] Low-Scaling Tensor Hypercontraction in the Cholesky Molecular Orbital Basis Applied to Second-Order Moller-Plesset Perturbation Theory
    Bangerter, Felix H.
    Glasbrenner, Michael
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (01) : 211 - 221
  • [25] Complete basis set limits of local second-order MOller-Plesset perturbation theory
    Jorgensen, Kameron R.
    Ramasesh, Vinay V.
    Hannibal, Sonja
    DeYonker, Nathan J.
    Wilson, Angela K.
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1178 - 1189
  • [26] Linear scaling second-order Moller-Plesset theory in the atomic orbital basis for large molecular systems
    Ayala, PY
    Scuseria, GE
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08): : 3660 - 3671
  • [27] Analytical energy gradients in second-order Moller-Plesset perturbation theory for extended systems
    Hirata, S
    Iwata, S
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11): : 4147 - 4155
  • [28] General biorthogonal projected bases as applied to second-order Moller-Plesset perturbation theory
    Weijo, Ville
    Manninen, Pekka
    Jorgensen, Poul
    Christiansen, Ove
    Olsen, Jeppe
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (07):
  • [29] Staggered Mesh Method for Correlation Energy Calculations of Solids: Second-Order Moller-Plesset Perturbation Theory
    Xing, Xin
    Li, Xiaoxu
    Lin, Lin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) : 4733 - 4745
  • [30] Resolution of the identity atomic orbital Laplace transformed second order Moller-Plesset theory for nonconducting periodic systems
    Izmaylov, Artur F.
    Scuseria, Gustavo E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (23) : 3421 - 3429