Application of resolution of identity approximation of second-order Moller-Plesset perturbation theory to three-body fragment molecular orbital method

被引:13
|
作者
Katouda, Michio [1 ]
机构
[1] Natl Inst Nat Sci, Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan
关键词
Three-body fragment molecular orbital method; Resolution of identity approximation; Second-order Moller-Plesset perturbation theory; RI-MP2; Density fitting MP2; PARALLEL ALGORITHM; BASIS-SETS; MP2;
D O I
10.1007/s00214-011-1021-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The resolution of identity (RI) approximation of second-order Moller-Plesset perturbation (MP2) theory, termed as RI-MP2, is applied to three-body fragment molecular orbital (FMO3) method. New implementation of FMO3 RI-MP2 is developed based on an efficient parallel RI-MP2 code developed recently in our group. Using this new implementation, the accuracy and computational time of FMO3 RI-MP2 calculations are assessed for water clusters, polyalanines, and proteins. The errors arising from RI-MP2 are sufficiently small in the FMO3 MP2 calculations that they give quantitative accuracy for practical chemical applications. Considerable time savings are attained in the FMO3 MP2 calculations with the application of RI-MP2.
引用
收藏
页码:449 / 453
页数:5
相关论文
共 50 条
  • [11] Analytic gradient for second order Moller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Li, Hui
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [12] Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Moller-Plesset perturbation theory
    Huang, Yuanhang
    Beran, Gregory J. O.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (04):
  • [13] The analytical gradient of dual-basis resolution-of-the-identity second-order Moller-Plesset perturbation theory
    Distasio, Robert A., Jr.
    Steele, Ryan P.
    Head-Gordon, Martin
    MOLECULAR PHYSICS, 2007, 105 (19-22) : 2731 - 2742
  • [14] Analytic energy gradients for the orbital-optimized second-order Moller-Plesset perturbation theory
    Bozkaya, Ugur
    Sherrill, C. David
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18):
  • [15] Dispersion-corrected Moller-Plesset second-order perturbation theory
    Tkatchenko, Alexandre
    DiStasio, Robert A., Jr.
    Head-Gordon, Martin
    Scheffler, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (09):
  • [16] Application of Local Second-Order Moller-Plesset Perturbation Theory to the Study of Structures in Solution
    Dieterich, Johannes M.
    Oliveira, Joao C. A.
    Mata, Ricardo A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3053 - 3060
  • [17] Efficient Parallel Algorithm of Second-Order Moller-Plesset Perturbation Theory with Resolution-of-Identity Approximation (RI-MP2)
    Katouda, Michio
    Nagase, Shigeru
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (10) : 2121 - 2130
  • [18] MP2[V] - A Simple Approximation to Second-Order Moller-Plesset Perturbation Theory
    Deng, Jia
    Gilbert, Andrew T. B.
    Gill, Peter M. W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (04) : 1639 - 1644
  • [19] An atomic orbital-based reformulation of energy gradients in second-order Moller-Plesset perturbation theory
    Schweizer, Sabine
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15):
  • [20] Stability of Hydrogen Hydrates from Second-Order Moller-Plesset Perturbation Theory
    Kosata, Jan
    Merkl, Padryk
    Teeratchanan, Pattanasak
    Hermann, Andreas
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (18): : 5624 - 5629