Application of resolution of identity approximation of second-order Moller-Plesset perturbation theory to three-body fragment molecular orbital method

被引:13
|
作者
Katouda, Michio [1 ]
机构
[1] Natl Inst Nat Sci, Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan
关键词
Three-body fragment molecular orbital method; Resolution of identity approximation; Second-order Moller-Plesset perturbation theory; RI-MP2; Density fitting MP2; PARALLEL ALGORITHM; BASIS-SETS; MP2;
D O I
10.1007/s00214-011-1021-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The resolution of identity (RI) approximation of second-order Moller-Plesset perturbation (MP2) theory, termed as RI-MP2, is applied to three-body fragment molecular orbital (FMO3) method. New implementation of FMO3 RI-MP2 is developed based on an efficient parallel RI-MP2 code developed recently in our group. Using this new implementation, the accuracy and computational time of FMO3 RI-MP2 calculations are assessed for water clusters, polyalanines, and proteins. The errors arising from RI-MP2 are sufficiently small in the FMO3 MP2 calculations that they give quantitative accuracy for practical chemical applications. Considerable time savings are attained in the FMO3 MP2 calculations with the application of RI-MP2.
引用
收藏
页码:449 / 453
页数:5
相关论文
共 50 条
  • [1] Application of resolution of identity approximation of second-order Møller–Plesset perturbation theory to three-body fragment molecular orbital method
    Michio Katouda
    Theoretical Chemistry Accounts, 2011, 130 : 449 - 453
  • [2] Accuracy of the three-body fragment molecular orbital method applied to Moller-Plesset perturbation theory
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Ishida, Toyokazu
    Kitaura, Kazuo
    Pulay, Peter
    Nagase, Shigeru
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (09) : 1476 - 1484
  • [3] Application of second-order Moller-Plesset perturbation theory with resolution-of-identity approximation to periodic systems
    Katouda, Michio
    Nagase, Shigeru
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (18):
  • [4] Second order Moller-Plesset perturbation theory based upon the fragment molecular orbital method
    Fedorov, DG
    Kitaura, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06): : 2483 - 2490
  • [5] Analytic energy gradient for second-order Moller-Plesset perturbation theory based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04):
  • [6] A parallelized integral-direct second-order Moller-Plesset perturbation theory method with a fragment molecular orbital scheme
    Mochizuki, Y
    Nakano, T
    Koikegami, S
    Tanimori, S
    Abe, Y
    Nagashima, U
    Kitaura, K
    THEORETICAL CHEMISTRY ACCOUNTS, 2004, 112 (5-6) : 442 - 452
  • [7] Stochastic Formulation of the Resolution of Identity: Application to Second Order Moller-Plesset Perturbation Theory
    Takeshita, Tyler Y.
    de Jong, Wibe A.
    Neuhauser, Daniel
    Baer, Roi
    Rabani, Eran
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (10) : 4605 - 4610
  • [8] A Kinetic Energy Fitting Metric for Resolution of the Identity Second-Order Moller-Plesset Perturbation Theory
    Lambrecht, Daniel S.
    Brandhorst, Kai
    Miller, William H.
    McCurdy, C. William
    Head-Gordon, Martin
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (13): : 2794 - 2801
  • [9] Distributed memory parallel implementation of energies and gradients for second-order Moller-Plesset perturbation theory with the resolution-of-the-identity approximation
    Hättig, C
    Hellweg, A
    Köhn, A
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (10) : 1159 - 1169
  • [10] A hybrid scheme for the resolution-of-the-identity approximation in second-order Moller-Plesset linear-r12 perturbation theory
    Klopper, W
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (23): : 10890 - 10895