Dimension reduction for compressible Navier-Stokes equations with density-dependent viscosity

被引:0
作者
Zhang, Mingyu [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
关键词
Compressible Navier-Stokes equations; Dimension reduction; Relative entropy; SUITABLE WEAK SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; STRONG UNIQUENESS; EXISTENCE;
D O I
10.1186/s13660-020-02405-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Navier-Stokes equations describing the motion of a compressible viscous fluid confined to a thin domain omega epsilon=I epsilon x(0,1)}=I_{\varepsilon }\times (0, 1)$\end{document}, I epsilon=(0,epsilon)subset of R=(0, \varepsilon )\subset \mathbb{R}$\end{document}. We show that the strong solutions in the 2D domain converge to the classical solutions of the limit 1D Navier-Stokes system as epsilon -> 0.d
引用
收藏
页数:16
相关论文
共 22 条
  • [1] [Anonymous], ASYMPTOT ANAL
  • [2] [Anonymous], MECH LIQUIDS GASES
  • [3] Dimension Reduction for Compressible Viscous Fluids
    Bella, Peter
    Feireisl, Eduard
    Novotny, Antonin
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 111 - 121
  • [4] Dimension Reduction for the Full Navier-Stokes-Fourier system
    Brezina, Jan
    Kreml, Ondrej
    Macha, Vaclav
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (04) : 659 - 683
  • [5] DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
  • [6] Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum
    Ding, Shijin
    Wen, Huanyao
    Zhu, Changjiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) : 1696 - 1725
  • [7] Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier-Stokes System
    Feireisl, Eduard
    Jin, Bum Ja
    Novotny, Antonin
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (04) : 717 - 730
  • [8] Suitable Weak Solutions to the Navier-Stokes Equations of Compressible Viscous Fluids
    Feireisl, Eduard
    Novotny, Antonin
    Sun, Yongzhong
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 611 - 631
  • [9] Feireisl E, 2009, ADV MATH FLUID MECH, P1
  • [10] Weak-Strong Uniqueness for the Isentropic Compressible Navier-Stokes System
    Germain, Pierre
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (01) : 137 - 146