Computing the Maslov Index from Singularities of a Matrix Riccati Equation

被引:2
作者
McCauley, Thomas [1 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
Maslov index; Stability; Linear stability; Matrix Riccati equation; SOLITARY WAVES; MORSE INDEX; THEOREMS; SYSTEMS; SPACE;
D O I
10.1007/s10884-016-9568-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Maslov index as a tool to analyze stability of steady state solutions to a reaction-diffusion equation in one spatial dimension. We show that the path of unstable subspaces associated to this equation is governed by a matrix Riccati equation whose solution S develops singularities when changes in the Maslov index occur. Our main result proves that at these singularities the change in Maslov index equals the number of eigenvalues of S that increase to minus the number of eigenvalues that decrease to -infinity.
引用
收藏
页码:1487 / 1502
页数:16
相关论文
共 17 条
[11]  
Jones C. K. R. T., ARXIV13014418V3
[12]   INSTABILITY OF STANDING WAVES FOR NON-LINEAR SCHRODINGER-TYPE EQUATIONS [J].
JONES, CKRT .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :119-138
[13]  
Kato T., 1980, PERTURBATION THEORY
[14]  
Mcduff D., 1999, INTRO SYMPLECTIC TOP
[15]   Evans functions for periodic waves on infinite cylindrical domains [J].
Oh, Myunghyun ;
Sandstede, Bjoern .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :544-555
[16]   THE MASLOV INDEX FOR PATHS [J].
ROBBIN, J ;
SALAMON, D .
TOPOLOGY, 1993, 32 (04) :827-844
[17]  
Smale S., 1978, Journal of Mathematics and Mechanics, V14, P202