Analysis of embrittlement of WWER-1000 RPV materials

被引:31
|
作者
Margolin, B. Z. [1 ]
Nikolayev, V. A. [1 ]
Yurchenko, E. V. [1 ]
Nikolayev, Yu A. [2 ]
Erak, D. Yu [2 ]
Nikolayeva, A. V. [2 ]
机构
[1] CRISM Prometey, St Petersburg 191015, Russia
[2] NRC Kurchatov Inst, Moscow, Russia
关键词
WWER-1000; reactor; Thermal aging; Neutron irradiation; Radiation embrittlement; Alloying elements; PROMETEY LOCAL APPROACH; BRITTLE-FRACTURE; RADIATION EMBRITTLEMENT;
D O I
10.1016/j.ijpvp.2011.11.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Analysis of embrittlement for WWER-1000 RPV materials is performed on the basis of available and original experimental data. Contributions of thermal aging and neutron irradiation to embrittlement are considered for base and weld metals. Equations have been obtained for the shift of the critical temperature of brittleness as a function of irradiation time and neutron fluence. For weld metal with high nickel content the dependence of the radiation embrittlement coefficient on the content of alloying elements affecting material embrittlement such as nickel, manganese and silicon has been obtained. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:178 / 186
页数:9
相关论文
共 50 条
  • [1] A NEW APPROACH TO DESCRIPTION OF IN-SERVICE EMBRITTLEMENT OF WWER-1000 REACTOR PRESSURE VESSEL MATERIALS
    Margolin, B. Z.
    Nikolaev, V. A.
    Yurchenko, E. V.
    Nikolaev, Yu. A.
    Erak, D. Yu.
    Nikolaeva, A. V.
    STRENGTH OF MATERIALS, 2010, 42 (01) : 2 - 16
  • [2] ISSUE OF APPLICATION FOR THE PRE-CRACKED CHARPY SPECIMENS TO ESTIMATE WWER-1000 RPV METAL EMBRITTLEMENT
    Revka, Volodymyr M.
    Chyrko, Liudmyla I.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 1B, 2017,
  • [3] Influence of Residual Stresses in the Cladding Zones of RPV WWER-1000 on Integrity Assessment
    Makhnenko, Oleh
    Kostenevich, Elena
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON THEORETICAL, APPLIED AND EXPERIMENTAL MECHANICS, 2019, 8 : 341 - 347
  • [4] Interpretation of Accelerated Irradiation Results for Materials of WWER-1000 Reactor Pressure Vessels
    Erak, D. Yu.
    Zhurko, D. A.
    Papina, V. B.
    STRENGTH OF MATERIALS, 2013, 45 (04) : 424 - 432
  • [5] Advanced method for WWER RPV embrittlement assessment
    Debarberis, L
    Kryukov, A
    Erak, D
    Kevorkyan, Y
    Zhurko, D
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2004, 81 (08) : 695 - 701
  • [6] Probabilistic analysis of mechanical properties of WWER-1000 reactor pressure vessel materials
    Gorynin I.V.
    Timofeev B.T.
    Sorokin A.A.
    Strength of Materials, 2006, 38 (2) : 117 - 127
  • [7] Interpretation of Accelerated Irradiation Results for Materials of WWER-1000 Reactor Pressure Vessels
    D. Yu. Erak
    D. A. Zhurko
    V. B. Papina
    Strength of Materials, 2013, 45 : 424 - 432
  • [8] Prediction of radiation embrittlement of WWER-1000 reactor vessel materials considering the influence of alloying elements and high content of copper
    Margolin B.Z.
    Yurchenko E.V.
    Inorganic Materials: Applied Research, 2017, 8 (6) : 936 - 943
  • [9] Radiation embrittlement of support structure materials for WWER RPVs
    Margolin, B. Z.
    Yurchenko, E. V.
    Kostylev, V. I.
    Morozov, A. M.
    Varovin, A. Ya
    Rogozkin, S. V.
    Nikitin, A. A.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 508 : 123 - 138
  • [10] REGRESSION ANALYSIS OF TRANSITION TEMPERATURE SHIFT DATABASE FOR THE CORE REGION BELTLINE WELDS OF WWER-1000 RPVs
    Zarazovskii, Maksym
    Revka, Volodymyr
    Chyrko, Liudmyla
    PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 6, 2020,