Prediction Consistency Guided Convolutional Neural Networks for Cross-Domain Bearing Fault Diagnosis

被引:17
|
作者
Wu, Songsong [1 ,2 ]
Jing, Xiao-Yuan [1 ,3 ]
Zhang, Qinghua [4 ]
Wu, Fei [2 ]
Zhao, Haifeng [5 ]
Dong, Yuning [6 ]
机构
[1] Guangdong Univ Petrochem Technol, Sch Comp Sci, Maoming 525000, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Automat, Nanjing 210023, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[4] Guangdong Univ Petrochem Technol, Guangdong Prov Petrochem Equipment Fault Diag Key, Maoming 525000, Peoples R China
[5] Jinling Inst Technol, Sch Software Engn, Nanjing 211169, Peoples R China
[6] Nanjing Univ Posts & Telecommun, Sch Commun & Informat Engn, Nanjing 210023, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; domain shift; convolutional neural networks; bearing reliability; mean-teacher model; rotating machinery; domain adaptation; knowledge transfer; MACHINES;
D O I
10.1109/ACCESS.2020.3005422
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An underlying assumption in bearing fault diagnosis is that the training data from a source domain and the test data from a target domain obey the same distribution. But this assumption can be easily violated in practical industrial environments due to domain shift, which leads to significant performance degradation. To overcome this issue, we propose a novel convolutional neural network model to identify cross-domain bearing fault types based on 1-D vibration signals. Different from current single-network-based approaches, our model comprises a student network and a teacher network that simultaneously conduct data distribution matching and discriminative feature learning. Moreover, the two networks promote each other with the label prediction consistency constraint, so that the discriminative knowledge is able to transfer between the domains. Our model bridges the semantic information of the source vibration signals and the distribution information of the target vibration signals by jointly performing cross-domain feature disentanglement and adaptation. The proposed method is evaluated extensively on the Case Western Reserve University bearing fault dataset in two scenarios: varying working loads and different sensor locations. Experimental results show the superior performance of our method compared with existing shallow and deep learning methods in the literature.
引用
收藏
页码:120089 / 120103
页数:15
相关论文
共 50 条
  • [41] Multirepresentation Dynamic Adaptive Network for Cross-Domain Rolling Bearing Fault Diagnosis in Complex Scenarios
    Zeng, Yi
    Sun, Bowen
    Xu, Renyi
    Qi, Guopeng
    Wang, Feiyang
    Zhang, Zhengzhuang
    Wu, Kelin
    Wu, Dazhuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [42] Deep Domain Adaptation Approach Using an Improved Parallel Residual Network for Cross-Domain Bearing Fault Diagnosis
    Huang, Jiezhou
    SHOCK AND VIBRATION, 2024, 2024
  • [43] Fault diagnosis of rolling bearing based on cross-domain divergence alignment and intra-domain distribution alienation
    Zhao, Shubiao
    Wang, Guangbin
    Li, Xuejun
    Chen, Jinhua
    Jiang, Lingli
    JOURNAL OF VIBROENGINEERING, 2023, 25 (06) : 1124 - 1140
  • [44] Cross-Domain Attribute Representation Based on Convolutional Neural Network
    Zhang, Guohui
    Liang, Gaoyuan
    Su, Fang
    Qu, Fanxin
    Wang, Jing-Yan
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 134 - 142
  • [45] Bearing Fault Diagnosis Using Frequency Domain Features and Artificial Neural Networks
    Sharma, Amandeep
    Jigyasu, Rajvardhan
    Mathew, Lini
    Chatterji, Shantanu
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS, ICTIS 2018, VOL 2, 2019, 107 : 539 - 547
  • [46] Research on rolling bearing fault diagnosis method based on AMVMD and convolutional neural networks
    Zhang, Huichao
    Shi, Peiming
    Han, Dongying
    Jia, Linjie
    MEASUREMENT, 2023, 217
  • [47] Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network
    Hou, Liqun
    Li, Zijing
    Qu, Huaisheng
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (11) : 32 - 44
  • [48] A Novel Method for Diagnosis of Bearing Fault Using Hierarchical Multitasks Convolutional Neural Networks
    Liu, Yong-Zhi
    Zou, Yi-Sheng
    Jiang, Yu-Liang
    Yu, Hui
    Ding, Guo-Fu
    SHOCK AND VIBRATION, 2020, 2020
  • [49] A Novel Method for Diagnosis of Bearing Fault Using Hierarchical Multitasks Convolutional Neural Networks
    Liu, Yong-Zhi
    Zou, Yi-Sheng
    Jiang, Yu-Liang
    Yu, Hui
    DIng, Guo-Fu
    Zou, Yi-Sheng (zysapple@swjtu.edu.cn), 2020, Hindawi Limited (2020)
  • [50] A comparative Analysis of 1D Convolutional Neural Networks for Bearing Fault Diagnosis
    Bapir, Aydil
    Aydin, Ilhan
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1406 - 1411