Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate

被引:41
作者
Cho, Eunkyung [1 ]
Lee, Young-Hee [2 ]
Kim, Hyunjoung [2 ]
Jang, Eun Jeong [3 ]
Kwak, Ja Hun [3 ]
Lee, Kyubock [2 ]
Ko, Chang Hyun [1 ]
Yoon, Wang Lai [4 ]
机构
[1] Chonnam Natl Univ, Sch Chem Engn, Gwangju 61186, South Korea
[2] Chungnam Natl Univ, Grad Sch Energy Sci & Technol, Daejeon 34134, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[4] Korea Inst Energy Res, Hydrogen Energy Res Ctr, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Mesoporous magnesium aluminate; Defect spinel structure; Dry methane reforming; Ni catalyst; A-site exsolution; NANOCRYSTALLINE MGAL2O4 SPINEL; CO2; NICKEL; PERFORMANCE; PEROVSKITE; REDUCTION; PARTICLES; STABILITY; ZEOLITES; SUPPORT;
D O I
10.1016/j.apcata.2020.117694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In dry methane reforming, the selection of a suitable support is critical due to coke formation and metal particle sintering. We prepared two types of mesoporous defect spinel magnesium aluminate support, namely DS09, with a Mg/Al molar ratio (Mg/Al) of 0.1, and DS19 with Mg/Al = 0.24. Each support has a high surface area, large mesopore volume, and a phase between its defect spinel (Mg0.388Al2.408O4) and spinel (MgAl2O4) structures. Magnesium aluminate with a Mg/Al of 0.5 (MG30), which has a low surface area and is devoid of mesopores, was used as the reference support. Ni was supported on DS09 (Ni-DS09) and DS19 (Ni-DS19) by A-site ex-solution. These catalysts display significant advantages over Ni-supported MG30 (Ni-MG30); Ni-DS19 exhibited a higher coke resistance than Ni-DS09, due to its lower acidity, while DS19, which contains a defect spinel structure, optimized acidity, and well-developed mesopores, was the best support for the DMR.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Mesoporous nanocrystalline MgAl2O4 spinel and its applications as support for Ni catalyst in dry reforming [J].
Alvar, E. Navaei ;
Rezaei, M. .
SCRIPTA MATERIALIA, 2009, 61 (02) :212-215
[2]   Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route [J].
Alvar, Esmaeil Navaei ;
Rezaei, Mehran ;
Alvar, Hassan Navaei .
POWDER TECHNOLOGY, 2010, 198 (02) :275-278
[3]   Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane [J].
Arbag, Huseyin ;
Yasyerli, Sena ;
Yasyerli, Nail ;
Dogu, Gulsen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (06) :2296-2304
[4]   Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane [J].
Bao, Zhenghong ;
Lu, Yongwu ;
Han, Jun ;
Li, Yebo ;
Yu, Fei .
APPLIED CATALYSIS A-GENERAL, 2015, 491 :116-126
[5]   CATION AND VACANCY DISTRIBUTION IN A SYNTHETIC DEFECT SPINEL [J].
BASSO, R ;
CARBONIN, S ;
DELLAGIUSTA, A .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1991, 194 (1-2) :111-119
[6]   CO2 reforming of methane over LaNiO3 as precursor material [J].
Batiot-Dupeyrat, C ;
Gallego, GAS ;
Mondragon, F ;
Barrault, J ;
Tatibouët, JM .
CATALYSIS TODAY, 2005, 107-08 :474-480
[7]   A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane [J].
Bian, Zhoufeng ;
Das, Sonali ;
Wai, Ming Hui ;
Hongmanorom, Plaifa ;
Kawi, Sibudjing .
CHEMPHYSCHEM, 2017, 18 (22) :3117-3134
[8]   MCM-41 supported PdNi catalysts for dry reforming of methane [J].
Damyanova, S. ;
Pawelec, B. ;
Arishtirova, K. ;
Fierro, J. L. G. ;
Sener, C. ;
Dogu, T. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 92 (3-4) :250-261
[9]   Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts [J].
de Sousa, Francisco F. ;
de Sousa, Helvio S. A. ;
Oliveira, Alcemira C. ;
Junior, Manoel C. C. ;
Ayala, Alejandro P. ;
Barros, Eduardo B. ;
Viana, Bartolomeu C. ;
Filho, Josue M. ;
Oliveira, Alcineia C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) :3201-3212
[10]  
Fisher F., 1928, Brennst.-Chem, P9