MODIFIED OPERATING PARAMETER-BASED IYER CORRELATION FOR THE COEFFICIENT OF PERFORMANCE (COP) PREDICTION OF DIFFERENT FLUID PAIRS IN DOUBLE-EFFECT VAPOR ABSORPTION REFRIGERATION (VAR) CYCLES

被引:0
作者
Khan, Muhammad Saad [1 ]
Kadam, Sambhaji T. [1 ]
Kyriakides, Alexios-Spyridon [2 ]
Hassan, Ibrahim [1 ]
Papadopoulos, Athanasios I. [2 ]
Rahman, Mohammad Azizur [1 ]
Seferlis, Panos [3 ]
机构
[1] Texas A&M Univ Qatar, Dept Mech Engn, Doha, Qatar
[2] Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki, Greece
[3] Aristotle Univ Thessaloniki, Dept Mech Engn, Thessaloniki, Greece
来源
PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 2 | 2021年
关键词
COP; double effect VAR cycle; Error analysis; performance-based correlations; SYSTEMS; SIMULATION; SERIES; SINGLE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vapor absorption refrigeration (VAR) is a sustainable alternative to the conventional vapor compression refrigeration (VCR) cycle, owing to its lower non-renewable energy requirements and potentially for exploitation of renewable energy sources. Traditionally, the coefficient of performance (COP) of the conventional single effect VAR cycle is considerably lower than VCR cycles. This provides room for improvement which can be attained through double effect VAR cycles that provide relatively higher performance. The COP of the dual effect VAR cycle is enhanced due to the waste/rejected heat energy utilization from the condenser or the absorber into a secondary generator. Models that correlate the COP of the double effect VAR cycle with operating parameters are not available in the open literature, with Iyer's correlation being the only exception. This work applies this COP correlation using literature data for double effect VAR that operate with a variety of refrigerant and absorbent pairs. A comprehensive Mean Absolute Percentage Error (MAPE) analysis is performed for more than 2028 data points of various fluid pairs. Results reveal that MAPE (86.6- 839%) values appear to be quite high for the reported correlation. Furthermore, the model is optimized using the proposed data set, considerably reducing the MAPE up to 36.03%. The results also indicate that due to the lack of fluid-specific parameters, the application of this correlation may not support the development of new double effect VAR cycles. Therefore, it is crucial to establish a performance-based correlation that considers both operational parameters and fluid parameters to assess the performance of new and efficient dual effect VAR cycles
引用
收藏
页数:6
相关论文
共 25 条
[21]   Thermodynamic comparison of water-based working fluid combinations for a vapour absorption refrigeration system [J].
Saravanan, R ;
Maiya, MP .
APPLIED THERMAL ENGINEERING, 1998, 18 (07) :553-568
[22]  
Songara AK, 1998, INT J ENERG RES, V22, P603, DOI 10.1002/(SICI)1099-114X(19980610)22:7<603::AID-ER379>3.0.CO
[23]  
2-9
[24]   SIMULATION AND THERMODYNAMIC DESIGN-DATA STUDY ON DOUBLE-EFFECT ABSORPTION COOLING CYCLE USING WATER LIBR-LISCN MIXTURE [J].
WON, SH ;
CHUNG, HS ;
LEE, H .
HEAT RECOVERY SYSTEMS & CHP, 1991, 11 (2-3) :161-168
[25]   Experimental investigation on NH3-H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources [J].
Wu, Wei ;
Shi, Wenxing ;
Wang, Jian ;
Wang, Baolong ;
Li, Xianting .
APPLIED ENERGY, 2016, 176 :258-271