Cold-atom gravimetry with a Bose-Einstein condensate

被引:113
作者
Debs, J. E. [1 ,2 ]
Altin, P. A. [1 ,2 ]
Barter, T. H. [1 ,2 ]
Doering, D. [1 ,2 ]
Dennis, G. R. [1 ,2 ]
McDonald, G. [1 ,2 ]
Anderson, R. P. [3 ]
Close, J. D. [1 ,2 ]
Robins, N. P. [1 ,2 ]
机构
[1] Australian Natl Univ, Australian Ctr Quantum Atom Opt, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Dept Quantum Sci, Canberra, ACT 0200, Australia
[3] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 03期
关键词
D O I
10.1103/PhysRevA.84.033610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a cold-atom gravimeter operating with a sample of Bose-condensed Rb-87 atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of (83 +/- 6)% at T = 3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources and observe a reduced visibility of (58 +/- 4)% for the thermal source. We suspect the loss in visibility is caused partly by wave-front aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and we present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely falling, coherent atomic sources.
引用
收藏
页数:5
相关论文
共 25 条
[1]   85Rb tunable-interaction Bose-Einstein condensate machine [J].
Altin, P. A. ;
Robins, N. P. ;
Doering, D. ;
Debs, J. E. ;
Poldy, R. ;
Figl, C. ;
Close, J. D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (06)
[2]  
AMALVICT M, 2010, J GEODET SOC JPN, V47, P410
[3]   Six-axis inertial sensor using cold-atom interferometry [J].
Canuel, B. ;
Leduc, F. ;
Holleville, D. ;
Gauguet, A. ;
Fils, J. ;
Virdis, A. ;
Clairon, A. ;
Dimarcq, N. ;
Borde, Ch. J. ;
Landragin, A. ;
Bouyer, P. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[4]   Relative phase of two Bose-Einstein condensates [J].
Castin, Y ;
Dalibard, J .
PHYSICAL REVIEW A, 1997, 55 (06) :4330-4337
[5]   Noise-Immune Conjugate Large-Area Atom Interferometers [J].
Chiow, Sheng-wey ;
Herrmann, Sven ;
Chu, Steven ;
Mueller, Holger .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[6]   Large Momentum Beam Splitter Using Bloch Oscillations [J].
Clade, Pierre ;
Guellati-Khelifa, Saida ;
Nez, Francois ;
Biraben, Francois .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[7]   A Bose-Einstein condensate in an optical lattice [J].
Denschlag, JH ;
Simsarian, JE ;
Häffner, H ;
McKenzie, C ;
Browaeys, A ;
Cho, D ;
Helmerson, K ;
Rolston, SL ;
Phillips, WD .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (14) :3095-3110
[8]   Atom interferometry with a weakly interacting Bose-Einstein condensate [J].
Fattori, M. ;
D'Errico, C. ;
Roati, G. ;
Zaccanti, M. ;
Jona-Lasinio, M. ;
Modugno, M. ;
Inguscio, M. ;
Modugno, G. .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[9]   Influence of optical aberrations in an atomic gyroscope [J].
Fils, J ;
Leduc, F ;
Bouyer, P ;
Holleville, D ;
Dimarcq, N ;
Clairon, A ;
Landragin, A .
EUROPEAN PHYSICAL JOURNAL D, 2005, 36 (03) :257-260
[10]   ATOM INTERFEROMETER BASED ON BRAGG SCATTERING FROM STANDING LIGHT WAVES [J].
GILTNER, DM ;
MCGOWAN, RW ;
LEE, SA .
PHYSICAL REVIEW LETTERS, 1995, 75 (14) :2638-2641