Chalcogenide glass photonic crystals

被引:60
作者
Freeman, Darren [1 ]
Grillet, Christian [5 ]
Lee, Michael W. [5 ]
Smith, Cameron L. C. [5 ]
Ruan, Yinlan [2 ]
Rode, Andrei [1 ]
Krolikowska, Maryla [1 ]
Tomljenovic-Hanic, Snjezana [5 ]
De Sterke, C. Martijn [5 ]
Steel, Michael J. [4 ,5 ]
Luther-Davies, Barry [1 ]
Madden, Steve [1 ]
Moss, David J. [5 ]
Lee, Yong-Hee [3 ]
Eggleton, Benjamin J. [5 ]
机构
[1] Australian Natl Univ, Laser Phys Ctr, Ctr Ultrahigh Bandwidth Dev Opt Syst CUDOS, Canberra, ACT 0200, Australia
[2] Univ Adelaide, Sch Chem, Ctr Expertise Photon, Adelaide, SA 5005, Australia
[3] Korea Adv Inst Sci & Technol, Dept Phys, Nanolaser Lab, Taejon 305701, South Korea
[4] RSoft Design Grp Inc, Chippendale, NSW 2008, Australia
[5] Univ Sydney, Sch Phys, Ctr Ultrahigh Bandwidth Dev Opt Syst, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
integrated optics; photonic crystal; chalcogenide glass; nonlinear optics; microcavity; resonator;
D O I
10.1016/j.photonics.2007.11.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
All-optical switching devices are based on a material possessing a nonlinear optical response, enabling light to control light, and are enjoying renewed interest. Photonic crystals are a promising platform for realizing compact all-optical switches operating at very low power and integrated on an optical integrated circuit. In this review, we show that by making photonic crystals from a highly nonlinear chalcogenide glass, we have the potential to integrate a variety of active devices into a photonic chip. We describe the fabrication and testing of two-dimensional Ge33As12Se55 chalcogenide glass photonic crystal membrane devices (waveguides and microcavities). We then demonstrate the ability to post-tune the devices using the material photosensitivity. In one proposal we hope to introduce a double-heterostructure microcavity using the photosensitivity alone. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 39 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper [J].
Barclay, PE ;
Srinivasan, K ;
Painter, O .
OPTICS EXPRESS, 2005, 13 (03) :801-820
[3]   Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity [J].
Centeno, E ;
Felbacq, D .
PHYSICAL REVIEW B, 2000, 62 (12) :R7683-R7686
[4]   High index contrast waveguides in chalcogenide glass and polymer [J].
DeCorby, RG ;
Ponnampalam, N ;
Pai, MM ;
Nguyen, HT ;
Dwivedi, PK ;
Clement, TJ ;
Haugen, CJ ;
McMullin, JN ;
Kasap, SO .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (02) :539-546
[5]   Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam [J].
Freeman, D ;
Madden, S ;
Luther-Davies, B .
OPTICS EXPRESS, 2005, 13 (08) :3079-3086
[6]  
FREEMAN D, 2006, INT C NAN NAN BRISB
[7]  
FREEMAN D, 2006, INT MICROSCOPY C, V16
[8]   Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires [J].
Grillet, C ;
Smith, C ;
Freeman, D ;
Madden, S ;
Luther-Davis, B ;
Magi, EC ;
Moss, DJ ;
Eggleton, BJ .
OPTICS EXPRESS, 2006, 14 (03) :1070-1078
[9]   Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes [J].
Grillet, C ;
Freeman, D ;
Luther-Davies, B ;
Madden, S ;
McPhedran, R ;
Moss, DJ ;
Steel, MJ ;
Eggleton, BJ .
OPTICS EXPRESS, 2006, 14 (01) :369-376
[10]   Nanowire coupling to photonic crystal nanocavities for single photon sources [J].
Grillet, Christian ;
Monat, Christelle ;
Smith, Cameron L. C. ;
Eggleton, Benjamin J. ;
Moss, David J. ;
Frederick, Simon ;
Dalacu, Dan ;
Poole, Philip J. ;
Lapointe, Jean ;
Aers, Geof ;
Williams, Robin L. .
OPTICS EXPRESS, 2007, 15 (03) :1267-1276