BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals

被引:44
作者
Jette, C. A. [1 ]
Flanagan, A. M. [2 ]
Ryan, J. [2 ]
Pyati, U. J. [1 ]
Carbonneau, S. [1 ]
Stewart, R. A. [1 ]
Langenau, D. M. [3 ]
Look, A. T. [1 ]
Letai, A. [2 ]
机构
[1] Harvard Univ, Sch Med, Dept Pediat Oncol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Childrens Hosp, Dept Hematol Oncol, Boston, MA 02115 USA
关键词
bim; bad; bid; bcl-2; zebrafish; apoptosis;
D O I
10.1038/cdd.2008.42
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we investigate the function of zebrafish Bcl-2 family proteins and demonstrate important conservation of function across zebrafish and mammalian systems. We have isolated a zebrafish ortholog of mammalian BIM and show that it is the most toxic of the zebrafish BH3-only genes examined, sharing this characteristic with the mammalian BIM gene. The zebrafish bad gene shows a complete lack of embryonic lethality, but like mammalian BAD, its pro-apoptotic activity is regulated through phosphorylation of critical serines. We also found that the pattern of mitochondrial dysfunction observed by zebrafish BH3 domain peptides in a mammalian cytochrome c release assay recapitulates the pattern of embryonic lethality induced by the respective mRNA injections in vivo. In contrast to zebrafish Bim, Bid exhibited only weak binding to zebrafish Bcl-2 and moderate-to-weak overall lethality in zebrafish embryos and isolated mitochondria. Given that zebrafish Bcl-2 binds strongly to mammalian BID and BIM peptides and proteins, the protein identified as the zebrafish Bid ortholog has different properties than mammalian BID. Overall, our results demonstrate the high degree of functional conservation between zebrafish and mammalian Bcl-2 family proteins, thus validating the zebrafish as a model system to further dissect the molecular mechanisms that regulate apoptosis in future forward genetic and chemical modifier screens.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 35 条
  • [1] Proapoptotic Bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity
    Bouillet, P
    Metcalf, D
    Huang, DCS
    Tarlinton, DM
    Kay, TWH
    Köntgen, F
    Adams, JM
    Strasser, A
    [J]. SCIENCE, 1999, 286 (5445) : 1735 - 1738
  • [2] BOYD JM, 1995, ONCOGENE, V11, P1921
  • [3] Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members
    Certo, Michael
    Moore, Victoria Del Gaizo
    Nishino, Mari
    Wei, Guo
    Korsmeyer, Stanley
    Armstrong, Scott A.
    Letai, Anthony
    [J]. CANCER CELL, 2006, 9 (05) : 351 - 365
  • [4] Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function
    Chen, L
    Willis, SN
    Wei, A
    Smith, BJ
    Fletcher, JI
    Hinds, MG
    Colman, PM
    Day, CL
    Adams, JM
    Huang, DCS
    [J]. MOLECULAR CELL, 2005, 17 (03) : 393 - 403
  • [5] Bax-independent inhibition of apoptosis by Bcl-x(L)
    Cheng, EHY
    Levine, B
    Boise, LH
    Thompson, CB
    Hardwick, JM
    [J]. NATURE, 1996, 379 (6565) : 554 - 556
  • [6] BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis
    Cheng, EHYA
    Wei, MC
    Weiler, S
    Flavell, RA
    Mak, TW
    Lindsten, T
    Korsmeyer, SJ
    [J]. MOLECULAR CELL, 2001, 8 (03) : 705 - 711
  • [7] The BCL2 family: Regulators of the cellular life-or-death switch
    Cory, S
    Adams, JM
    [J]. NATURE REVIEWS CANCER, 2002, 2 (09) : 647 - 656
  • [8] Pro-apoptotic BH3-only Bcl-2 family members in vertebrate model organisms suitable for genetic experimentation
    Coultas, L
    Huang, DCS
    Adams, JM
    Strasser, A
    [J]. CELL DEATH AND DIFFERENTIATION, 2002, 9 (11) : 1163 - 1166
  • [9] Cell death: Critical control points
    Danial, NN
    Korsmeyer, SJ
    [J]. CELL, 2004, 116 (02) : 205 - 219
  • [10] 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation
    Datta, SR
    Katsov, A
    Hu, L
    Petros, A
    Fesik, SW
    Yaffe, MB
    Greenberg, ME
    [J]. MOLECULAR CELL, 2000, 6 (01) : 41 - 51