General Optimal Polynomial Approximants, Stabilization, and Projections of Unity

被引:0
|
作者
Felder, Christopher [1 ]
机构
[1] Washington Univ St Louis, Dept Math & Stat, St Louis, MO 63136 USA
来源
ANALYSIS IN THEORY AND APPLICATIONS | 2022年
关键词
Optimal polynomial approximants; inner functions; CYCLICITY; SPACES;
D O I
10.4208/ata.OA-2020-0047xxx202x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In various Hilbert spaces of analytic functions on the unit disk, we characterize when a function has optimal polynomial approximants given by truncations of a single power series or, equivalently, when the approximants stabilize. We also introduce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.
引用
收藏
页数:21
相关论文
共 11 条
  • [1] Boundary Behavior of Optimal Polynomial Approximants
    Beneteau, Catherine
    Manolaki, Myrto
    Seco, Daniel
    CONSTRUCTIVE APPROXIMATION, 2021, 54 (01) : 157 - 183
  • [2] Zeros of optimal polynomial approximants in lpA
    Cheng, Raymond
    Ross, William T.
    Seco, Daniel
    ADVANCES IN MATHEMATICS, 2022, 404
  • [3] MORE PROPERTIES OF OPTIMAL POLYNOMIAL APPROXIMANTS IN HARDY SPACES
    Cheng, Raymond
    Felder, Christopher
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (02) : 267 - 295
  • [4] Simultaneous zero-free approximation and universal optimal polynomial approximants
    Beneteau, Catherine
    Ivrii, Oleg
    Manolaki, Myrto
    Seco, Daniel
    JOURNAL OF APPROXIMATION THEORY, 2020, 256
  • [5] A survey of optimal polynomial approximants, applications to digital filter design, and related open problems
    Bénéteau C.
    Centner R.
    Complex Analysis and its Synergies, 2021, 7 (2)
  • [6] Remarks on Inner Functions and Optimal Approximants
    Beneteau, Catherine
    Fleeman, Matthew C.
    Khavinson, Dmitry S.
    Seco, Daniel
    Sola, Alan A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04): : 704 - 716
  • [7] Some problems on optimal approximants
    Seco, Daniel
    RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS, 2016, 679 : 193 - 205
  • [8] Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants
    Beneteau, Catherine
    Khavinson, Dmitry
    Liaw, Constanze
    Seco, Daniel
    Sola, Alan A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 726 - 746
  • [9] OPTIMAL APPROXIMANTS AND ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES II: FAMILIES OF POLYNOMIALS IN THE UNIT BALL
    Sargent, Meredith
    Sola, Alan A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 5321 - 5330
  • [10] Novel polynomial Bernstein bases and B,zier curves based on a general notion of polynomial blossoming
    Goldman, Ron
    Simeonov, Plamen
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 605 - 634