Influence of external flue gas recirculation on gas combustion in a coke oven heating system

被引:36
作者
Gamrat, Stanislaw [1 ]
Poraj, Jakub [1 ]
Bodys, Jakub [1 ]
Smolka, Jacek [1 ]
Adamczyk, Wojciech [1 ]
机构
[1] Silesian Tech Univ, Inst Thermal Technol, Konarskiego 22, PL-44100 Gliwice, Poland
关键词
Coke oven battery; Heating flue; Coke oven gas; NOx reduction; External flue gas recirculation; CFD MODEL; COAL; NOX; EMISSIONS; OXIDE;
D O I
10.1016/j.fuproc.2016.07.010
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, external flue gas recirculation was considered to reduce nitrogen oxides (NOx) emissions in the heating flues of a coke oven battery. The thermal and prompt NO formation was numerically investigated employing an accurate 3-D representation of the heating flue geometry that the most popular Polish coke oven battery. Originally the developed model was experimentally validated as a transient coupled model for the representative heating flue and the two coke ovens. Then the coupled model was simplified to the heating flue model only with realistic boundary conditions on the heating flue and coke oven interface. As a result of the heating flue model simulations, the range of the reversed flue gas ratio was found for typical thermal loadings of the heating wall to effectively reduce NOx formation. The obtained results showed the significant effect of the considered flue gas recirculation on NOx formation reduction. Namely, the recirculation ratio of 0.2 resulted in 50% of the NOx reduction efficiency. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:430 / 437
页数:8
相关论文
共 26 条
[1]   Application of the computational method for predicting NOx reduction within large scale coal-fired boiler [J].
Adamczyk, Wojciech P. ;
Werle, Sebastian ;
Ryfa, Arkadiusz .
APPLIED THERMAL ENGINEERING, 2014, 73 (01) :343-350
[2]  
Annamalai K., 2006, COMBUSTION SCI ENG, DOI 10.1201/9781420003789
[3]  
[Anonymous], 2014, ANSYS FLUENT THEOR G
[4]  
[Anonymous], 1981, 19 AER SCI M ST LOUI
[5]   Flue gas recirculation in a gas-fired laboratory furnace: Measurements and modelling [J].
Baltasar, J ;
Carvalho, MG ;
Coelho, P ;
Costa, M .
FUEL, 1997, 76 (10) :919-929
[6]   Coal combustion in O2/CO2 mixtures compared with air [J].
Croiset, E ;
Thambimuthu, K ;
Palmer, A .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2000, 78 (02) :402-407
[7]  
de Soete G G., 1975, Symposium (International) on Combustion, P1093, DOI [10.1016/S0082-0784(75)80374-2, DOI 10.1016/S0082-0784(75)80374-2]
[8]   Coal for metallurgical coke production:: predictions of coke quality and future requirements for cokemaking [J].
Díez, MA ;
Alvarez, R ;
Barriocanal, C .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2002, 50 (1-4) :389-412
[9]   SUPEREQUILIBRIUM AND THERMAL NITRIC-OXIDE FORMATION IN TURBULENT-DIFFUSION FLAMES [J].
DRAKE, MC ;
CORREA, SM ;
PITZ, RW ;
SHYY, W ;
FENIMORE, CP .
COMBUSTION AND FLAME, 1987, 69 (03) :347-365
[10]  
Guo Z., 2005, China Particuology, V3, P373, DOI [https://doi.org/10.1016/S1672-2515(07)60217-6, DOI 10.1016/S1672-2515(07)60217-6]