Machine learning prediction model of acute kidney injury after percutaneous coronary intervention

被引:15
作者
Kuno, Toshiki [1 ]
Mikami, Takahisa [2 ]
Sahashi, Yuki [3 ,4 ,5 ]
Numasawa, Yohei [6 ]
Suzuki, Masahiro [7 ]
Noma, Shigetaka [8 ]
Fukuda, Keiichi [9 ]
Kohsaka, Shun [9 ]
机构
[1] Montefiore Med Ctr, Div Cardiol, Albert Einstein Coll Med, 111 East 210th St, Bronx, NY 10467 USA
[2] Tufts Med Ctr, Dept Neurol, Boston, MA USA
[3] Gifu Heart Ctr, Dept Cardiovasc Med, Gifu, Japan
[4] Gifu Univ, Dept Cardiol, Grad Sch Med, Gifu, Japan
[5] Yokohama City Univ, Grad Sch Data Sci, Dept Hlth Data Sci, Yokohama, Kanagawa, Japan
[6] Japanese Red Cross Ashikaga Hosp, Dept Cardiol, Ashikaga, Japan
[7] Saitama Natl Hosp, Dept Cardiol, Wako, Saitama, Japan
[8] Saiseikai Utsunomiya Hosp, Dept Cardiol, Utsunomiya, Tochigi, Japan
[9] Keio Univ, Dept Cardiol, Sch Med, Tokyo, Japan
关键词
ACUTE MYOCARDIAL-INFARCTION; INTRAAORTIC BALLOON PUMP; NCDR; NEPHROPATHY; ASSOCIATION; REGISTRY; FAILURE;
D O I
10.1038/s41598-021-04372-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute kidney injury (AKI) after percutaneous coronary intervention (PCI) is associated with a significant risk of morbidity and mortality. The traditional risk model provided by the National Cardiovascular Data Registry (NCDR) is useful for predicting the preprocedural risk of AKI, although the scoring system requires a number of clinical contents. We sought to examine whether machine learning (ML) techniques could predict AKI with fewer NCDR-AKI risk model variables within a comparable PCI database in Japan. We evaluated 19,222 consecutive patients undergoing PCI between 2008 and 2019 in a Japanese multicenter registry. AKI was defined as an absolute or a relative increase in serum creatinine of 0.3 mg/dL or 50%. The data were split into training (N = 16,644; 2008-2017) and testing datasets (N = 2578; 2017-2019). The area under the curve (AUC) was calculated using the light gradient boosting model (GBM) with selected variables by Lasso and SHapley Additive exPlanations (SHAP) methods among 12 traditional variables, excluding the use of an intra-aortic balloon pump, since its use was considered operator-dependent. The incidence of AKI was 9.4% in the cohort. Lasso and SHAP methods demonstrated that seven variables (age, eGFR, preprocedural hemoglobin, ST-elevation myocardial infarction, non-ST-elevation myocardial infarction/unstable angina, heart failure symptoms, and cardiogenic shock) were pertinent. AUC calculated by the light GBM with seven variables had a performance similar to that of the conventional logistic regression prediction model that included 12 variables (light GBM, AUC [training/testing datasets]: 0.779/0.772; logistic regression, AUC [training/testing datasets]: 0.797/0.755). The AKI risk model after PCI using ML enabled adequate risk quantification with fewer variables. ML techniques may aid in enhancing the international use of validated risk models.
引用
收藏
页数:12
相关论文
共 46 条
  • [1] Intra-aortic Balloon Pump Therapy for Acute Myocardial Infarction AMeta-analysis
    Ahmad, Yousif
    Sen, Sayan
    Shun-Shin, Matthew J.
    Ouyang, Jing
    Finegold, Judith A.
    Al-Lamee, Rasha K.
    Davies, Justin E. R.
    Cole, Graham D.
    Francis, Darrel P.
    [J]. JAMA INTERNAL MEDICINE, 2015, 175 (06) : 931 - 939
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] Incremental Cost of Acute Kidney Injury after Percutaneous Coronary Intervention in the United States
    Amin, Amit P.
    McNeely, Christian
    Spertus, John A.
    Bach, Richard G.
    Frogge, Nathan
    Lindner, Samuel
    Jain, Sudhir
    Bradley, Steven M.
    Wasfy, Jason H.
    Goyal, Abhinav
    Maddox, Thomas
    House, John A.
    Kulkarni, Hemant
    Masoudi, Frederick A.
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2020, 125 (01) : 29 - 33
  • [4] Association of Variation in Contrast Volume With Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention
    Amin, Amit P.
    Bach, Richard G.
    Caruso, Mary L.
    Kennedy, Kevin F.
    Spertus, John A.
    [J]. JAMA CARDIOLOGY, 2017, 2 (09) : 1007 - 1012
  • [5] [Anonymous], 2016, Cleveland clinic to identify at-risk patients in ICU using Cortana intelligence
  • [6] Obtaining a follow-up appointment before discharge protects against readmission for patients with acute coronary syndrome and heart failure: A quality improvement project
    Baky, Vidagay
    Moran, Dane
    Warwick, Tessa
    George, Alice
    Williams, Tammy
    McWilliams, Eric
    Marine, Joseph E.
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2018, 257 : 12 - 15
  • [7] Management of Coronary Disease in Patients with Advanced Kidney Disease
    Bangalore, S.
    Maron, D. J.
    OBrien, S. M.
    Fleg, J. L.
    Kretov, E., I
    Briguori, C.
    Kaul, U.
    Reynolds, H. R.
    Mazurek, T.
    Sidhu, M. S.
    Berger, J. S.
    Mathew, R. O.
    Bockeria, O.
    Broderick, S.
    Pracon, R.
    Herzog, C. A.
    Huang, Z.
    Stone, G. W.
    Boden, W. E.
    Newman, J. D.
    Ali, Z. A.
    Mark, D. B.
    Spertus, J. A.
    Alexander, K. P.
    Chaitman, B. R.
    Chertow, G. M.
    Hochman, J. S.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (17) : 1608 - 1618
  • [8] Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification
    Bartholomew, BA
    Harjai, KJ
    Dukkipati, S
    Boura, JA
    Yerkey, MW
    Glazier, S
    Grines, CL
    O'Neill, WW
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2004, 93 (12) : 1515 - 1519
  • [9] Enhanced Mortality Risk Prediction With a Focus on High-Risk Percutaneous Coronary Intervention Results From 1,208,137 Procedures in the NCDR (National Cardiovascular Data Registry)
    Brennan, J. Matthew
    Curtis, Jeptha P.
    Dai, David
    Fitzgerald, Susan
    Khandelwal, Akshay K.
    Spertus, John A.
    Rao, Sunil V.
    Singh, Mandeep
    Shaw, Richard E.
    Ho, Kalon K. L.
    Krone, Ronald J.
    Weintraub, William S.
    Weaver, W. Douglas
    Peterson, Eric D.
    [J]. JACC-CARDIOVASCULAR INTERVENTIONS, 2013, 6 (08) : 790 - 799
  • [10] Serious renal dysfunction after percutaneous coronary interventions can be predicted
    Brown, Jeremiah R.
    DeVries, James T.
    Piper, Winthrop D.
    Robb, John F.
    Hearne, Michael J.
    Lee, Peter M. Ver
    Kellet, Mirle A.
    Watkins, Mathew W.
    Ryan, Thomas J.
    Silver, M. Theodore
    Ross, Cathy S.
    MacKenzie, Todd A.
    O'Connor, Gerald T.
    Malenka, David J.
    [J]. AMERICAN HEART JOURNAL, 2008, 155 (02) : 260 - 266