Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

被引:60
|
作者
Bennet, Mathieu A. [1 ,2 ]
Richardson, Patricia R. [1 ,2 ]
Arlt, Jochen [2 ,3 ]
McCarthy, Aongus [4 ]
Buller, Gerald S. [4 ]
Jones, Anita C. [1 ,2 ]
机构
[1] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Edinburgh, COSMIC, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
FLOW; CELL; TWEEZERS; ACQUISITION; TRANSPORT; GRADIENT; SYSTEMS; DRIVEN; TIME;
D O I
10.1039/c1lc20391f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The novel combination of optical tweezers and fluorescence lifetime imaging microscopy (FLIM) has been used, in conjunction with specially developed temperature-sensitive fluorescent microprobes, for the non-invasive measurement of temperature in a microfluidic device. This approach retains the capability of FLIM to deliver quantitative mapping of microfluidic temperature without the disadvantageous need to introduce a fluorescent dye that pervades the entire micofluidic system. This is achieved by encapsulating the temperature-sensitive Rhodamine B fluorophore within a microdroplet which can be held and manipulated in the microfluidic flow using optical tweezers. The microdroplet is a double bubble in which an aqueous droplet of the fluorescent dye is surrounded by an oil shell which serves both to contain the fluorophore and to provide the refractive index differential required for optical trapping of the droplet in an external aqueous medium.
引用
收藏
页码:3821 / 3828
页数:8
相关论文
共 50 条
  • [21] Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
    Kohki Okabe
    Noriko Inada
    Chie Gota
    Yoshie Harada
    Takashi Funatsu
    Seiichi Uchiyama
    Nature Communications, 3
  • [22] Widefield frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) for accurate measurement of oxygen gradients within microfluidic devices
    Wu, Hsiao-Mei
    Lee, Tse-Ang
    Ko, Ping-Liang
    Liao, Wei-Hao
    Hsieh, Tung-Han
    Tung, Yi-Chung
    ANALYST, 2019, 144 (11) : 3494 - 3504
  • [23] Fluorescence lifetime imaging microscopy in the medical sciences
    Ebrecht, Ren
    Paul, Craig Don
    Wouters, Fred S.
    PROTOPLASMA, 2014, 251 (02) : 293 - 305
  • [24] Fluorescence lifetime imaging microscopy of nanodiamonds in vivo
    Kuo, Yung
    Hsu, Tsung-Yuan
    Wu, Yi-Chun
    Hsu, Jui-Hung
    Chang, Huan-Cheng
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VI, 2013, 8635
  • [25] Picosecond fluorescence lifetime microscopy by TCSPC imaging
    Becker, W
    Bergmann, A
    König, K
    Tirlapur, U
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES, 2001, 4262 : 414 - 419
  • [26] Fluorescence lifetime imaging microscopy of amyloid aggregates
    Koh, Christine J.
    Lee, Minyung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2006, 27 (04): : 477 - 478
  • [27] Multiple frequency fluorescence lifetime imaging microscopy
    Squire, A
    Verveer, PJ
    Bastiaens, PIH
    JOURNAL OF MICROSCOPY-OXFORD, 2000, 197 : 136 - 149
  • [28] Fluorescence lifetime imaging microscopy in life sciences
    Borst, Jan Willem
    Visser, Antonie J. W. G.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (10)
  • [29] Fluorescence lifetime imaging microscopy in the medical sciences
    René Ebrecht
    Craig Don Paul
    Fred S. Wouters
    Protoplasma, 2014, 251 : 293 - 305
  • [30] Spectrally resolved fluorescence lifetime imaging microscopy
    Hanley, QS
    Arndt-Jovin, DJ
    Jovin, TM
    APPLIED SPECTROSCOPY, 2002, 56 (02) : 155 - 166