Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

被引:60
作者
Bennet, Mathieu A. [1 ,2 ]
Richardson, Patricia R. [1 ,2 ]
Arlt, Jochen [2 ,3 ]
McCarthy, Aongus [4 ]
Buller, Gerald S. [4 ]
Jones, Anita C. [1 ,2 ]
机构
[1] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Edinburgh, COSMIC, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
FLOW; CELL; TWEEZERS; ACQUISITION; TRANSPORT; GRADIENT; SYSTEMS; DRIVEN; TIME;
D O I
10.1039/c1lc20391f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The novel combination of optical tweezers and fluorescence lifetime imaging microscopy (FLIM) has been used, in conjunction with specially developed temperature-sensitive fluorescent microprobes, for the non-invasive measurement of temperature in a microfluidic device. This approach retains the capability of FLIM to deliver quantitative mapping of microfluidic temperature without the disadvantageous need to introduce a fluorescent dye that pervades the entire micofluidic system. This is achieved by encapsulating the temperature-sensitive Rhodamine B fluorophore within a microdroplet which can be held and manipulated in the microfluidic flow using optical tweezers. The microdroplet is a double bubble in which an aqueous droplet of the fluorescent dye is surrounded by an oil shell which serves both to contain the fluorophore and to provide the refractive index differential required for optical trapping of the droplet in an external aqueous medium.
引用
收藏
页码:3821 / 3828
页数:8
相关论文
共 29 条
  • [11] Functional in vivo imaging using fluorescence lifetime light-sheet microscopy
    Mitchell, Claire A.
    Poland, Simon P.
    Seyforth, James
    Nedbal, Jakub
    Gelot, Thomas
    Huq, Tahiyat
    Holst, Gerhard
    Knight, Robert D.
    Ameer-Beg, Simon M.
    OPTICS LETTERS, 2017, 42 (07) : 1269 - 1272
  • [12] Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy
    Gorlitz, Frederik
    Kelly, Douglas J.
    Warren, Sean C.
    Alibhai, Dominic
    West, Lucien
    Kumar, Sunil
    Alexandrov, Yuriy
    Munro, Ian
    Garcia, Edwin
    McGinty, James
    Talbot, Clifford
    Serwa, Remigiusz A.
    Thinon, Emmanuelle
    da Paola, Vincenzo
    Murray, Edward J.
    Stuhmeier, Frank
    Neil, Mark A. A.
    Tate, Edward W.
    Dunsby, Christopher
    French, Paul M. W.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (119):
  • [13] Research Progress on Fast Fluorescence Lifetime Imaging Microscopy and Its in vivo Applications (Invited)
    Lin Fangrui
    Wang Yiqiang
    Yi Min
    Zhang Chenshuang
    Liu Liwei
    Qu Junle
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (06)
  • [14] High-resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy
    Manfredini, Marco
    Arginelli, Federica
    Dunsby, Christopher
    French, Paul
    Talbot, Clifford
    Koenig, Karsten
    Pellacani, Giovanni
    Ponti, Giovanni
    Seidenari, Stefania
    SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) : E433 - E443
  • [15] Generalized stepwise optical saturation enables super-resolution fluorescence lifetime imaging microscopy
    Zhang, Yide
    Benirschke, David
    Abdalsalam, Ola
    Howard, Scott S.
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (09): : 4077 - 4093
  • [16] Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy
    Sun, Yuansheng
    Day, Richard N.
    Periasamy, Ammasi
    NATURE PROTOCOLS, 2011, 6 (09) : 1324 - 1340
  • [17] Fluorescence Lifetime Imaging Microscopy (FLIM) of Intracellular Transport by Means of Doubly Labelled siRNA Architectures
    Doll, Larissa
    Lackner, Jens
    Ronicke, Franziska
    Nienhaus, Gerd Ulrich
    Wagenknecht, Hans-Achim
    CHEMBIOCHEM, 2021, 22 (15) : 2561 - 2567
  • [18] Resistive-Pulse Sensing Coupled with Fluorescence Lifetime Imaging Microscopy for Differentiation of Individual Liposomes
    Young, Tanner W.
    Cox-Vazquez, Sarah J.
    Call, Ethan D.
    Shah, Dhari C.
    Jacobson, Stephen C.
    Vazquez, Ricardo J.
    ACS NANO, 2025, 19 (02) : 2162 - 2170
  • [19] High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy
    Bower, Andrew J.
    Li, Joanne
    Chaney, Eric J.
    Marjanovic, Marina
    Spillman, Darold R., Jr.
    Boppart, Stephen A.
    OPTICA, 2018, 5 (10): : 1290 - 1296
  • [20] Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy
    Iermak, Ievgeniia
    Vink, Jochem
    Bader, Arjen N.
    Wientjes, Emilie
    van Amerongen, Herbert
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (09): : 1473 - 1478