Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

被引:60
|
作者
Bennet, Mathieu A. [1 ,2 ]
Richardson, Patricia R. [1 ,2 ]
Arlt, Jochen [2 ,3 ]
McCarthy, Aongus [4 ]
Buller, Gerald S. [4 ]
Jones, Anita C. [1 ,2 ]
机构
[1] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Edinburgh, COSMIC, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
FLOW; CELL; TWEEZERS; ACQUISITION; TRANSPORT; GRADIENT; SYSTEMS; DRIVEN; TIME;
D O I
10.1039/c1lc20391f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The novel combination of optical tweezers and fluorescence lifetime imaging microscopy (FLIM) has been used, in conjunction with specially developed temperature-sensitive fluorescent microprobes, for the non-invasive measurement of temperature in a microfluidic device. This approach retains the capability of FLIM to deliver quantitative mapping of microfluidic temperature without the disadvantageous need to introduce a fluorescent dye that pervades the entire micofluidic system. This is achieved by encapsulating the temperature-sensitive Rhodamine B fluorophore within a microdroplet which can be held and manipulated in the microfluidic flow using optical tweezers. The microdroplet is a double bubble in which an aqueous droplet of the fluorescent dye is surrounded by an oil shell which serves both to contain the fluorophore and to provide the refractive index differential required for optical trapping of the droplet in an external aqueous medium.
引用
收藏
页码:3821 / 3828
页数:8
相关论文
共 50 条
  • [1] Fluorescence lifetime imaging microscopy: Two-dimensional distribution measurement of fluorescence lifetime
    Fujiwara, Masanobu
    Cieslik, William
    MEASURING BIOLOGICAL RESPONSES WITH AUTOMATED MICROSCOPY, 2006, 414 : 633 - 642
  • [2] Fluorescence lifetime imaging microscopy for the real time measurement.
    Itoh, H
    Fukami, T
    Kinoshita, K
    Inagaki, Y
    Mizushima, H
    Takahashi, A
    Hayakawa, T
    Kusumi, A
    Kinosita, K
    BIOPHYSICAL JOURNAL, 1998, 74 (02) : A185 - A185
  • [3] Fluorescence lifetime imaging microscopy
    Chang, Ching-Wei
    Sud, Dhruv
    Mycek, Mary-Ann
    DIGITAL MICROSCOPY, 3RD EDITION, 2007, 81 : 495 - +
  • [4] Fluorescence lifetime imaging microscopy
    Cole, MJ
    Siegel, J
    Jones, R
    Webb, SED
    Gu, Y
    French, PMW
    Lever, MJ
    Neil, MAA
    Juskaitis, R
    Wilson, T
    BIOMEDICAL TOPICAL MEETINGS, TECHNICAL DIGEST, 2000, 38 : 310 - 312
  • [5] Fluorescence lifetime imaging microscopy
    不详
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [6] Fluorescence lifetime imaging microscopy
    Torrado, Belen
    Pannunzio, Bruno
    Malacrida, Leonel
    Digman, Michelle A.
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [7] Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy
    Graham, Emmelyn M.
    Iwai, Kaoru
    Uchiyama, Seiichi
    de Silva, A. Prasanna
    Magennis, Steven W.
    Jones, Anita C.
    LAB ON A CHIP, 2010, 10 (10) : 1267 - 1273
  • [8] Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy
    Walther, Kirstin A.
    Papke, Bjoern
    Sinn, Maja B.
    Michel, Kirsten
    Kinkhabwala, Ali
    MOLECULAR BIOSYSTEMS, 2011, 7 (02) : 322 - 336
  • [9] Multi Fluorescence Microsensors for Spatiotemporal Measurement of Culture Environment in a Microfluidic Chip
    Takagi, Keisuke
    Maruyama, Hisataka
    Masuda, Taisuke
    Suzuki, Osamu
    Arai, Fumihito
    2016 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2016,
  • [10] Fluorescence lifetime imaging techniques for microscopy
    French, T
    So, PTC
    Dong, CY
    Berland, KM
    Gratton, E
    METHODS IN CELL BIOLOGY, VOLUME 56, 1998, 56 : 277 - 304