Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

被引:60
作者
Bennet, Mathieu A. [1 ,2 ]
Richardson, Patricia R. [1 ,2 ]
Arlt, Jochen [2 ,3 ]
McCarthy, Aongus [4 ]
Buller, Gerald S. [4 ]
Jones, Anita C. [1 ,2 ]
机构
[1] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Edinburgh, COSMIC, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
FLOW; CELL; TWEEZERS; ACQUISITION; TRANSPORT; GRADIENT; SYSTEMS; DRIVEN; TIME;
D O I
10.1039/c1lc20391f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The novel combination of optical tweezers and fluorescence lifetime imaging microscopy (FLIM) has been used, in conjunction with specially developed temperature-sensitive fluorescent microprobes, for the non-invasive measurement of temperature in a microfluidic device. This approach retains the capability of FLIM to deliver quantitative mapping of microfluidic temperature without the disadvantageous need to introduce a fluorescent dye that pervades the entire micofluidic system. This is achieved by encapsulating the temperature-sensitive Rhodamine B fluorophore within a microdroplet which can be held and manipulated in the microfluidic flow using optical tweezers. The microdroplet is a double bubble in which an aqueous droplet of the fluorescent dye is surrounded by an oil shell which serves both to contain the fluorophore and to provide the refractive index differential required for optical trapping of the droplet in an external aqueous medium.
引用
收藏
页码:3821 / 3828
页数:8
相关论文
共 29 条
  • [1] Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy
    Graham, Emmelyn M.
    Iwai, Kaoru
    Uchiyama, Seiichi
    de Silva, A. Prasanna
    Magennis, Steven W.
    Jones, Anita C.
    LAB ON A CHIP, 2010, 10 (10) : 1267 - 1273
  • [2] Fluorescence lifetime imaging microscopy of nanodiamonds in vivo
    Kuo, Yung
    Hsu, Tsung-Yuan
    Wu, Yi-Chun
    Hsu, Jui-Hung
    Chang, Huan-Cheng
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VI, 2013, 8635
  • [3] Fluorescence lifetime imaging microscopy in the medical sciences
    Ebrecht, Ren
    Paul, Craig Don
    Wouters, Fred S.
    PROTOPLASMA, 2014, 251 (02) : 293 - 305
  • [4] Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy
    Lin, Po-Yen
    Lyu, Hong-Chou
    Hsu, Chin-Ying Stephen
    Chang, Chia-Seng
    Kao, Fu-Jen
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (01): : 149 - 158
  • [5] Quantitative analysis of DNA-Dox diffusion kinetics in a microfluidic device using the fluorescence lifetime imaging microscopy method
    Ren, Sheng
    Liu, Liwei
    Zhao, Yihua
    Lin, Fangrui
    Hu, Rui
    Yi, Rongxing
    Shen, Binglin
    Qu, Junle
    APPLIED PHYSICS EXPRESS, 2020, 13 (11)
  • [6] Direct measurement of the temperature profile close to an optically trapped absorbing particle
    Siler, Martin
    Jezek, Jan
    Jakl, Petr
    Pilat, Zdenek
    Zemanek, Pavel
    OPTICS LETTERS, 2016, 41 (05) : 870 - 873
  • [7] Electro-optic imaging enables efficient wide-field fluorescence lifetime microscopy
    Bowman, Adam J.
    Klopfer, Brannon B.
    Juffmann, Thomas
    Kasevich, Mark A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Rapid 3D fluorescence imaging of individual optically trapped living immune cells
    Wolfson, Deanna
    Steck, Michael
    Persson, Martin
    McNerney, Gregory
    Popovich, Ana
    Goksor, Mattias
    Huser, Thomas
    JOURNAL OF BIOPHOTONICS, 2015, 8 (03) : 208 - 216
  • [9] Unveiling the Hydrogen Bonding Network of Intracellular Water by Fluorescence Lifetime Imaging Microscopy
    Rao, Chethana
    Verma, Navneet C.
    Nandi, Chayan K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (04) : 2673 - 2677
  • [10] Determination of the Wall Thickness of Block Copolymer Vesicles by Fluorescence Lifetime Imaging Microscopy
    Handschuh-Wang, Stephan
    Wesner, Daniel
    Wang, Tao
    Lu, Pengyu
    Tuecking, Katrin-Stephanie
    Haas, Simon
    Druzhinin, Sergey I.
    Jiang, Xin
    Schoenherr, Holger
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2017, 218 (04)