Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations

被引:109
作者
Cole, Joanne B. [1 ,2 ,3 ,4 ,5 ]
Florez, Jose C. [1 ,2 ,3 ,6 ]
Hirschhorn, Joel N. [1 ,4 ,5 ,7 ]
机构
[1] Broad Inst MIT & Harvard, Programs Metab & Med & Populat Genet, Cambridge, MA 02142 USA
[2] Massachusetts Gen Hosp, Diabet Unit, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA 02114 USA
[4] Boston Childrens Hosp, Div Endocrinol, Boston, MA 02115 USA
[5] Boston Childrens Hosp, Ctr Basic & Translat Obes Res, Boston, MA 02115 USA
[6] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[7] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
基金
英国医学研究理事会;
关键词
WIDE ASSOCIATION; ALCOHOL-CONSUMPTION; HUMAN-DISEASES; GLOBAL BURDEN; PATTERNS; RISK; METAANALYSIS; REGIONS; LOCI; SENSITIVITY;
D O I
10.1038/s41467-020-15193-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unhealthful dietary habits are leading risk factors for life-altering diseases and mortality. Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We perform a genomewide association on 85 single food intake and 85 principal component-derived dietary patterns from food frequency questionnaires in UK Biobank. We identify 814 associated loci, including olfactory receptor associations with fruit and tea intake; 136 associations are only identified using dietary patterns. Mendelian randomization suggests our top healthful dietary pattern driven by wholemeal vs. white bread consumption is causally influenced by factors correlated with education but is not strongly causal for coronary artery disease or type 2 diabetes. Overall, we demonstrate the value in complementary phenotyping approaches to complex dietary datasets, and the utility of genomic analysis to understand the relationships between diet and human health. The choice of food intake is at least partially influenced by genetics, even though the effect sizes appear rather modest. Here, Cole et al. perform GWAS for food intake (85 individual food items and 85 derived dietary patterns) and test potential causal relationships with cardiometabolic traits using Mendelian randomization.
引用
收藏
页数:11
相关论文
共 63 条
[1]   FlashPCA2: principal component analysis of Biobank-scale genotype datasets [J].
Abraham, Gad ;
Qiu, Yixuan ;
Inouye, Michael .
BIOINFORMATICS, 2017, 33 (17) :2776-2778
[2]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[3]   A clinical trial of the effects of dietary patterns on blood pressure [J].
Appel, LJ ;
Moore, TJ ;
Obarzanek, E ;
Vollmer, WM ;
Svetkey, LP ;
Sacks, FM ;
Bray, GA ;
Vogt, TM ;
Cutler, JA ;
Windhauser, MM ;
Lin, PH ;
Karanja, N .
NEW ENGLAND JOURNAL OF MEDICINE, 1997, 336 (16) :1117-1124
[4]   A robust clustering algorithm for identifying problematic samples in genome-wide association studies [J].
Bellenguez, Celine ;
Strange, Amy ;
Freeman, Colin ;
Donnelly, Peter ;
Spencer, Chris C. A. .
BIOINFORMATICS, 2012, 28 (01) :134-135
[5]   Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies [J].
Benner, Christian ;
Havulinna, Aki S. ;
Jarvelin, Marjo-Riitta ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Pirinen, Matti .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (04) :539-551
[6]   FINEMAP: efficient variable selection using summary data from genome-wide association studies [J].
Benner, Christian ;
Spencer, Chris C. A. ;
Havulinna, Aki S. ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Pirinen, Matti .
BIOINFORMATICS, 2016, 32 (10) :1493-1501
[7]   ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry [J].
Bierut, L. J. ;
Goate, A. M. ;
Breslau, N. ;
Johnson, E. O. ;
Bertelsen, S. ;
Fox, L. ;
Agrawal, A. ;
Bucholz, K. K. ;
Grucza, R. ;
Hesselbrock, V. ;
Kramer, J. ;
Kuperman, S. ;
Nurnberger, J. ;
Porjesz, B. ;
Saccone, N. L. ;
Schuckit, M. ;
Tischfield, J. ;
Wang, J. C. ;
Foroud, T. ;
Rice, J. P. ;
Edenberg, H. J. .
MOLECULAR PSYCHIATRY, 2012, 17 (04) :445-450
[8]   Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence [J].
Boyle, James P. ;
Thompson, Theodore J. ;
Gregg, Edward W. ;
Barker, Lawrence E. ;
Williamson, David F. .
POPULATION HEALTH METRICS, 2010, 8
[9]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[10]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+