An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA

被引:42
作者
Chen, Gang [1 ]
Hay, Geoffrey J. [1 ]
机构
[1] Univ Calgary, Dept Geog, Foothills Facil Remote Sensing & GISci, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quickbird; Lidar transect; Geographic Object-Based Image Analysis (GEOBIA); Forest canopy height; INVENTORY DATA; SPOT HRV; LANDSAT; INTEGRATION; UPDATE;
D O I
10.1016/j.rse.2011.02.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-resolution digital canopy models derived from airborne lidar data have the ability to provide detailed information on the vertical structure of forests. However, compared to satellite data of similar spatial resolution and extent, the small footprint airborne lidar data required to produce such models remain expensive. In an effort to reduce these costs, the primary objective of this paper is to develop an airborne lidar sampling strategy to model full-scene forest canopy height from optical imagery, lidar transects and Geographic Object-Based Image Analysis (GEOBIA). To achieve this goal, this research focuses on (i) determining appropriate lidar transect features (i.e., location, direction and extent) from an optical scene, (ii) developing a mechanism to model forest canopy height for the full-scene based on a minimum number of lidar transects, and (iii) defining an optimal mean object size (MOS) to accurately model the canopy composition and height distribution. Results show that (i) the transect locations derived from our optimal lidar transect selection algorithm accurately capture the canopy height variability of the entire study area; (ii) our canopy height estimation models have similar performance in two lidar transect directions (i.e., north-south and west-east); (iii) a small lidar extent (17.6% of total size) can achieve similar canopy height estimation accuracies as those modeled from the full lidar scene; and (iv) different MOS can lead to distinctly different canopy height results. By comparing the best canopy height estimate with the full lidar canopy height data, we obtained average estimation errors of 6.0 m and 6.8 m for conifer and deciduous forests at the individual tree crown/small tree cluster level, and an area weighted combined error of 6.2 m, which is lower than the provincial forest inventory height class interval (i.e., approximate to 9.0 m). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1532 / 1542
页数:11
相关论文
共 50 条
[31]   Lidar sampling - Using an airborne profiler to estimate forest biomass in Hedmark County, Norway [J].
Nelson, R. ;
Gobakken, T. ;
Naesset, E. ;
Gregoire, T. G. ;
Stahl, G. ;
Holm, S. ;
Flewelling, J. .
REMOTE SENSING OF ENVIRONMENT, 2012, 123 :563-578
[32]   DEEP LEARNING FOR FOREST CANOPY HEIGHT ESTIMATION FROM SAR [J].
Mahesh, Ragini Bal ;
Haensch, Ronny .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :5672-5675
[33]   Extrapolating forest canopy cover by combining airborne LiDAR and Landsat data: The case of the Yeste Fire (Spain) [J].
Viana-Soto, Alba ;
Garcia, Mariano ;
Aguado, Inmaculada ;
Salas, Javier .
EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XII, 2021, 11863
[34]   Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests [J].
Goldbergs, Grigorijs .
REMOTE SENSING, 2023, 15 (06)
[35]   Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model [J].
Wang, Xinyun ;
Guo, Yige ;
He, Jie ;
Du, Lingtong ;
Hu, Tianhua .
GEOCARTO INTERNATIONAL, 2018, 33 (02) :148-162
[36]   Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method [J].
Chen, Song ;
Gong, Ming ;
Sun, Hua ;
Chen, Ming ;
Wang, Binbin .
FORESTS, 2025, 16 (01)
[37]   Modelling LiDAR derived tree canopy height from Landsat TM, ETM plus and OLI satellite imagery-A machine learning approach [J].
Staben, Grant ;
Lucieer, Arko ;
Scarth, Peter .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 :666-681
[38]   MODEL-BASED ESTIMATION OF LARGE AREA FOREST CANOPY HEIGHT AND BIOMASS USING RADAR AND OPTICAL REMOTE SENSING WITH LIMITED LIDAR DATA [J].
Benson, Michael ;
Pierce, Leland ;
Sarabandi, Kamal .
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, :1016-1019
[39]   Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery [J].
Schlickmann, Monique Bohora ;
Bueno, Inacio Thomaz ;
Valle, Denis ;
Hammond, William M. ;
Prichard, Susan J. ;
Hudak, Andrew T. ;
Klauberg, Carine ;
Karasinski, Mauro Alessandro ;
Brock, Kody Melissa ;
Rocha, Kleydson Diego ;
Xia, Jinyi ;
Vieira Leite, Rodrigo ;
Higuchi, Pedro ;
da Silva, Ana Carolina ;
Maximo da Silva, Gabriel ;
Cova, Gina R. ;
Silva, Carlos Alberto .
REMOTE SENSING, 2025, 17 (02)
[40]   Estimating Forest Canopy Height With Multi-Spectral and Multi-Temporal Imagery Using Deep Learning [J].
Oehmcke, Stefan ;
Nyegaard-Signori, Thomas ;
Grogan, Kenneth ;
Gieseke, Fabian .
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, :4915-4924