Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices

被引:136
作者
Hirzallah, Omar [2 ]
Kittaneh, Fuad [1 ]
Shebrawi, Khalid [3 ]
机构
[1] Univ Jordan, Dept Math, Amman, Jordan
[2] Hashemite Univ, Dept Math, Zarqa, Jordan
[3] Al Balqa Appl Univ, Dept Appl Sci, Salt, Jordan
关键词
Numerical radius; Operator norm; Operator matrix; Off-diagonal part; Inequality; HILBERT-SPACE OPERATORS; COMMUTATORS; BOUNDS;
D O I
10.1007/s00020-011-1893-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several numerical radius inequalities for certain 2x2 operator matrices. Among other inequalities, it is shown that if X, Y, Z, and W are bounded linear operators on a Hilbert space, then w([X Y Z W]) >= max (w(X), w(W), w(Y + Z)/2, w(Y - Z/2)) and w([X Y Z W]) <= max (w(X), w(W)) + w(Y + Z) + w(Y - Z/2. As an application of a special case of the second inequality, it is shown that parallel to X parallel to/2 + vertical bar parallel to Re X parallel to - parallel to x parallel to/2 vertical bar/4 + vertical bar parallel to Im X parallel to - parallel to x parallel to/2 vertical bar/4 <= w(X), which is a considerable improvement of the classical inequality parallel to x parallel to/2 <= w(X). Here w(.) and parallel to.parallel to are the numerical radius and the usual operator norm, respectively.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 11 条
[1]   Norm equalities and inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) :57-67
[2]   Numerical radius inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :421-427
[3]  
Bhatia R., 2013, MATRIX ANAL
[4]  
Halmos P, 1982, HILBERT SPACE PROBLE
[5]   Numerical Radius Inequalities for Commutators of Hilbert Space Operators [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) :739-749
[6]   NORM INEQUALITIES OF POSITIVE OPERATOR MATRICES [J].
HOU, JC ;
DU, HK .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 22 (03) :281-294
[7]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[8]   Bounds for the zeros of polynomials from matrix inequalities [J].
Kittaneh, F .
ARCHIV DER MATHEMATIK, 2003, 81 (05) :601-608
[9]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[10]  
Levon G, 2010, OPER MATRICES, V4, P119