Endothelialized biomaterials for tissue engineering applications in vivo

被引:70
作者
Khan, Omar F. [1 ,2 ,3 ]
Sefton, Michael V. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[2] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada
[3] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院; 加拿大健康研究院;
关键词
SMOOTH-MUSCLE-CELLS; VASCULAR GRAFTS; SHEAR-STRESS; PHENOTYPIC HETEROGENEITY; SCAFFOLDS; MATRIX; VITRO; EXPRESSION; ADHESION; ANGIOGENESIS;
D O I
10.1016/j.tibtech.2011.03.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Rebuilding tissues involves the creation of a vasculature to supply nutrients and this in turn means that the endothelial cells (ECs) of the resulting endothelium must be a quiescent non-thrombogenic blood contacting surface. Such ECs are deployed on biomaterials that are composed of natural materials such as extracellular matrix proteins or synthetic polymers in the form of vascular grafts or tissue-engineered constructs. Because EC function is influenced by their origin, biomaterial surface chemistry and hemodynamics, these issues must be considered to optimize implant performance. In this review, we examine the recent in vivo use of endothelialized biomaterials and discuss the fundamental issues that must be considered when engineering functional vasculature.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 82 条
[1]   Phenotypic heterogeneity of the endothelium I. Structure, function, and mechanisms [J].
Aird, William C. .
CIRCULATION RESEARCH, 2007, 100 (02) :158-173
[2]   Phenotypic heterogeneity of the endothelium II. Representative vascular beds [J].
Aird, William C. .
CIRCULATION RESEARCH, 2007, 100 (02) :174-190
[3]   INTEGRINS AND OTHER CELL-ADHESION MOLECULES [J].
ALBELDA, SM ;
BUCK, CA .
FASEB JOURNAL, 1990, 4 (11) :2868-2880
[4]   Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling [J].
Baffert, F ;
Le, T ;
Sennino, B ;
Thurston, G ;
Kuo, CJ ;
Hu-Lowe, D ;
McDonald, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 290 (02) :H547-H559
[5]   Clinical performance of vascular grafts lined with endothelial cells [J].
Bordenave, L ;
Rémy-Zolghadri, M ;
Fernandez, P ;
Bareille, R ;
Midy, D .
ENDOTHELIUM-JOURNAL OF ENDOTHELIAL CELL RESEARCH, 1999, 6 (04) :267-275
[6]   Functional structure and composition of the extracellular matrix [J].
Bosman, FT ;
Stamenkovic, I .
JOURNAL OF PATHOLOGY, 2003, 200 (04) :423-428
[7]   Expression of adhesion molecules on endothelial cells after contact with knitted Dacron [J].
Cenni, E ;
Granchi, D ;
Ciapetti, G ;
Verri, E ;
Cavedagna, D ;
Gamberini, S ;
Cervellati, M ;
DiLeo, A ;
Pizzoferrato, A .
BIOMATERIALS, 1997, 18 (06) :489-494
[8]   Functions of hyaluronan in wound repair [J].
Chen, WYJ ;
Abatangelo, G .
WOUND REPAIR AND REGENERATION, 1999, 7 (02) :79-89
[9]   Prevascularization of a Fibrin-Based Tissue Construct Accelerates the Formation of Functional Anastomosis with Host Vasculature [J].
Chen, Xiaofang ;
Aledia, Anna S. ;
Ghajar, Cyrus M. ;
Griffith, Craig K. ;
Putnam, Andrew J. ;
Hughes, Christopher C. W. ;
George, Steven C. .
TISSUE ENGINEERING PART A, 2009, 15 (06) :1363-1371
[10]   Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues [J].
Chiu, Loraine L. Y. ;
Radisic, Milica .
BIOMATERIALS, 2010, 31 (02) :226-241