Millimeter-wave GaNHFET technology

被引:6
|
作者
Higashiwaki, Masataka [1 ]
Mimura, Takashi [2 ]
Matsui, Toshiaki
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Fujitsu Labs Ltd, Atsugi, Kanagawa 2430197, Japan
来源
关键词
GaN; heterostructure field-effect transistor (HFET); millimeter-wave; catalytic chemical vapor deposition (Cat-CVD); current-gain cutoff frequency (f(T)); maximum oscillation frequency (f(max));
D O I
10.1117/12.767574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes device process and characteristics of sub-100-nm-gate AlGaN/GaN heterostructure field-effect transistors (HFETs) for millimeter-wave applications. We developed three techniques to suppress short-channel effects and thereby enhance high-frequency device characteristics: high-Al-composition and thin AlGaN barrier layers, SiN passivation by catalytic chemical vapor deposition, and sub-100-nm Ti-based gates. The Al0.4Ga0.6N(6 nm)/GaN HFETs with a gate length of 60 nm on a 4H-SiC substrate showed a maximum drain current density of 1.6 A/mm and a maximum transconductance of 424 mS/mm. The use of the techniques led to record current-gain cutoff frequency (f(T)) and maximum oscillation frequency (f(max)) of 190 and 241 GHz, respectively. The f(T) and f(max) kept high values over the wide range of drain voltage and current. These results indicate significantly high potential of GaN HFETs for high-power applications in the millimeter-wave frequency range.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Millimeter-wave technology finds its narrow niches
    Browne, J
    MICROWAVES & RF, 1996, 35 (04) : 33 - +
  • [32] Review on Millimeter-Wave Radar and Camera Fusion Technology
    Zhou, Yong
    Dong, Yanyan
    Hou, Fujin
    Wu, Jianqing
    SUSTAINABILITY, 2022, 14 (09)
  • [34] ALPHA-PEGS GROWTH ON MILLIMETER-WAVE TECHNOLOGY
    MANZ, B
    REID, W
    CROSSLEY, I
    MICROWAVES & RF, 1983, 22 (03) : 35 - 37
  • [35] Technology for emerging commercial applications at millimeter-wave frequencies
    Emrick, R
    Franson, S
    Holmes, J
    Bosco, B
    Rockwell, S
    2005 IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005, : 425 - 429
  • [36] Super-resolution in millimeter-wave imaging technology
    Pirogov, YA
    Attia, MF
    Gladun, VV
    Dubina, AI
    Tischenko, DA
    Terentev, EN
    PASSIVE MILLIMETER-WAVE IMAGING TECHNOLOGY, 1997, 3064 : 249 - 252
  • [37] Flexible technology for millimeter-wave wireless sensors applications
    Takacs, A.
    Dragomirescu, D.
    Charlot, S.
    Calmon, P-F
    2017 IEEE INTERNATIONAL WORKSHOP OF ELECTRONICS, CONTROL, MEASUREMENT, SIGNALS AND THEIR APPLICATION TO MECHATRONICS (ECMSM), 2017,
  • [38] GaN MMIC technology for microwave and millimeter-wave applications
    Micovic, M
    Kurdoghlian, A
    Moyer, HP
    Hashimoto, P
    Schmitz, A
    Milosavljevic, I
    Willadsen, PJ
    Wong, WS
    Duvall, J
    Hu, M
    Wetzel, M
    Chow, DH
    2005 IEEE CSIC SYMPOSIUM, TECHNICAL DIGEST, 2005, : 173 - 176
  • [39] Special section on microwave and millimeter-wave technology - Foreword
    Araki, Kiyomichi
    IEICE TRANSACTIONS ON ELECTRONICS, 2007, E90C (09) : 1657 - 1657
  • [40] Millimeter-Wave Silicon-On-Glass Integrated Technology
    Ranjkesh, N.
    Taeb, A.
    Abdellatif, A.
    Gigoyan, S.
    Basha, M.
    Safavi-Naeini, S.
    2014 IEEE INTERNATIONAL MICROWAVE AND RF CONFERENCE (IMARC), 2014, : 233 - 236