DIFFERENTIAL ELECTROMAGNETIC EQUATIONS IN FRACTIONAL SPACE

被引:48
作者
Zubair, M. [1 ]
Mughal, M. J. [1 ]
Naqvi, Q. A. [2 ]
Rizvi, A. A. [2 ]
机构
[1] GIK Inst Engn Sci & Technol, Fac Elect Engn, Swabi 23640, Khyber Pakhtunk, Pakistan
[2] Quaid I Azam Univ, Dept Elect, Islamabad 45320, Pakistan
关键词
DUAL INTERFACE; ANTENNA; RENORMALIZATION; FIELDS; WAVES; SLAB;
D O I
10.2528/PIER11011403
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present study deals with a novel approach for fractional space generalization of the differential electromagnetic equations. These equations can describe the behavior of electric and magnetic fields in any fractal media. A new form of vector differential operator Del, and its related differential operators, is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell equations have been worked out for fractal media. The Laplace, Poisson and Helmholtz equations in fractional space are derived by using modified vector differential operators. Also a new fractional space generalization of the potentials for static and time varying fields is presented.
引用
收藏
页码:255 / 269
页数:15
相关论文
共 33 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]  
[Anonymous], 1989, Advanced Engineering Electromagnetics
[4]   RENORMALIZATION AND COMPLEX SPACE-TIME DIMENSIONS [J].
ASHMORE, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 29 (03) :177-187
[5]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[6]   On electromagnetic field in fractional space [J].
Baleanu, Dumitru ;
Golmankhaneh, Alireza K. ;
Golmankhaneh, Ali K. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :288-292
[7]  
BOLLINI CG, 1972, NUOV CIMEN S I FIS B, VB 12, P20
[8]  
HE X, 1990, CELL, V75, P111
[9]   EBG STRUCTURES WITH FRACTAL TOPOLOGIES FOR ULTRA-WIDEBAND GROUND BOUNCE NOISE SUPPRESSION [J].
He, Y. ;
Li, L. ;
Liang, C. -H. ;
Liu, Q. H. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2010, 24 (10) :1365-1374
[10]   FRACTIONAL RECTANGULAR IMPEDANCE WAVEGUIDE [J].
Hussain, A. ;
Naqvi, Q. A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 96 :101-116