Fuzzy Clustering-Based Ensemble Approach to Predicting Indian Monsoon

被引:9
作者
Saha, Moumita [1 ]
Mitra, Pabitra [1 ]
Chakraborty, Arun [2 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Comp Sci & Engn, Paschim Medinipur 721302, W Bengal, India
[2] Indian Inst Technol Kharagpur, Ctr Oceans Rivers Atmosphere & Land Sci, Paschim Medinipur 721302, W Bengal, India
关键词
ARTIFICIAL NEURAL-NETWORK; REANALYSIS PROJECT; SUMMER MONSOON; RAINFALL; FORECAST; MODELS;
D O I
10.1155/2015/329835
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Indian monsoon is an important climatic phenomenon and a global climatic marker. Both statistical and numerical prediction schemes for Indian monsoon have been widely studied in literature. Statistical schemes are mainly based on regression or neural networks. However, the variability of monsoon is significant over the years and a single model is often inadequate. Meteorologists revise their models on different years based on prevailing global climatic incidents like El-Nino. These indices often have degree of severity associated with them. In this paper, we cluster the monsoon years based on their fuzzy degree of associativity to these climatic event patterns. Next, we develop individual prediction models for the year clusters. A weighted ensemble of these individual models is used to obtain the final forecast. The proposed method performs competitively with existing forecast models.
引用
收藏
页数:12
相关论文
共 21 条
  • [1] Multi-model ensemble schemes for predicting northeast monsoon rainfall over peninsular India
    Acharya, Nachiketa
    Kar, S. C.
    Kulkarni, Makarand A.
    Mohanty, U. C.
    Sahoo, L. N.
    [J]. JOURNAL OF EARTH SYSTEM SCIENCE, 2011, 120 (05) : 795 - 805
  • [2] Blandford H.F., 1884, P ROY SOC LONDON, V37, P3, DOI DOI 10.1098/RSPL.1884.0003
  • [3] Comparative study among different neural net learning algorithms applied to rainfall time series
    Chattopadhyay, Surajit
    Chattopadhyay, Goutami
    [J]. METEOROLOGICAL APPLICATIONS, 2008, 15 (02) : 273 - 280
  • [4] The Twentieth Century Reanalysis Project
    Compo, G. P.
    Whitaker, J. S.
    Sardeshmukh, P. D.
    Matsui, N.
    Allan, R. J.
    Yin, X.
    Gleason, B. E., Jr.
    Vose, R. S.
    Rutledge, G.
    Bessemoulin, P.
    Broennimann, S.
    Brunet, M.
    Crouthamel, R. I.
    Grant, A. N.
    Groisman, P. Y.
    Jones, P. D.
    Kruk, M. C.
    Kruger, A. C.
    Marshall, G. J.
    Maugeri, M.
    Mok, H. Y.
    Nordli, O.
    Ross, T. F.
    Trigo, R. M.
    Wang, X. L.
    Woodruff, S. D.
    Worley, S. J.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (654) : 1 - 28
  • [5] Durai VR, 2013, GEOFIZIKA, V30, P119
  • [6] Improving the Prediction of the East Asian Summer Monsoon: New Approaches
    Fan, Ke
    Liu, Ying
    Chen, HuoPo
    [J]. WEATHER AND FORECASTING, 2012, 27 (04) : 1017 - 1030
  • [7] Gowariker V., 1991, Mausam, V42, P125
  • [8] Rainfall forecasting by technological machine learning models
    Hong, Wei-Chiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) : 41 - 57
  • [9] Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO
  • [10] 2