ANALYSIS OF THE DPG METHOD FOR THE POISSON EQUATION

被引:100
作者
Demkowicz, L. [1 ]
Gopalakrishnan, J. [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
discontinuous Petrov-Galerkin method; discontinuous Galerkin; Helmholtz decomposition; adaptive; hp; finite element method; convection-diffusion; DISCONTINUOUS GALERKIN METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; ELEMENTS; SYSTEMS; H-1;
D O I
10.1137/100809799
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an error analysis of the recently developed DPG method applied to solve the Poisson equation and a convection-diffusion problem. We prove that the method is quasioptimal. Error estimates in terms of both the mesh size h and the polynomial degree p (for various element shapes) can be derived from our results. Results of extensive numerical experiments are also presented.
引用
收藏
页码:1788 / 1809
页数:22
相关论文
共 25 条
[1]   Aspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers [J].
Ainsworth, M ;
Senior, B .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 150 (1-4) :65-87
[2]  
[Anonymous], 1991, SPRINGER SER COMPUT
[3]  
[Anonymous], 1977, MATH ASPECTS FINITE
[4]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[5]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[6]   A least-squares approach based on a discrete minus one inner product for first order systems [J].
Bramble, JH ;
Lazarov, RD ;
Pasciak, JE .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :935-955
[7]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[8]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[9]   A discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems [J].
Causin, P ;
Sacco, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :280-302
[10]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463