On linear weingarten surfaces

被引:27
作者
Lopez, Rafael [1 ]
机构
[1] Univ Granada, Departmento Geometria & Topol, E-18071 Granada, Spain
关键词
Weingarten surface; cyclic surface; Riemann type;
D O I
10.1142/S0129167X08004728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study surfaces in Euclidean 3-space that satisfy a Weingarten condition of linear type as k(1) = mk(2) + n, where m and n are real numbers and k(1) and k(2) denote the principal curvatures at each point of the surface. We investigate the existence of such surfaces parametrized by a uniparametric family of circles. We prove that the only surfaces that exist are surfaces of revolution and the classical examples of minimal surfaces discovered by Riemann. The latter situation only occurs in the case ( m, n) = (-1, 0).
引用
收藏
页码:439 / 448
页数:10
相关论文
共 18 条
[1]   SOME NEW CHARACTERIZATIONS OF THE EUCLIDEAN SPHERE [J].
CHERN, SS .
DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) :279-290
[2]  
Delaunay C., 1841, J MATH PURES APPL 1, V6, P309
[3]  
Enneper A., 1869, Z MATH PHYS, V14, P393
[4]   Linear Weingarten surfaces in R3 [J].
Gálvez, JA ;
Martínez, A ;
Milán, F .
MONATSHEFTE FUR MATHEMATIK, 2003, 138 (02) :133-144
[5]  
Hartman P., 1954, AM J MATH, V76, P502, DOI 10.2307/2372698
[6]  
Hopf H., 1951, MATH NACHR, V4, P232
[7]   On closed weingarten surfaces [J].
Kühnel, W ;
Steller, M .
MONATSHEFTE FUR MATHEMATIK, 2005, 146 (02) :113-126
[8]  
Lopez FJ, 1997, J DIFFER GEOM, V47, P376
[9]   Uniqueness of the Riemann minimal examples [J].
Meeks, WH ;
Perez, J ;
Ros, A .
INVENTIONES MATHEMATICAE, 1998, 133 (01) :107-132
[10]  
Mladenov IM, 2004, J NONLINEAR MATH PHY, V11, P55