The Water-Wave Equations: From Zakharov to Euler

被引:17
作者
Alazard, Thomas [1 ,2 ]
Burq, Nicolas [3 ,4 ]
Zuily, Claude [3 ,4 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
[2] CNRS, UMR 8553, F-75230 Paris 05, France
[3] Univ Paris 11, Dept Math, F-91405 Orsay, France
[4] CNRS, F-91405 Orsay, France
来源
STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES | 2013年 / 84卷
关键词
Cauchy theory; Euler equations; Water-wave system; WELL-POSEDNESS;
D O I
10.1007/978-1-4614-6348-1_1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the Zakharov/Craig-Sulem formulation of the water-wave equations, we prove that one can define a pressure term and hence obtain a solution of the classical Euler equations. It is proved that these results hold in rough domains, under minimal assumptions on the regularity to ensure, in terms of Sobolev spaces, that the solutions are C-1.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 7 条
[1]   ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (03) :413-499
[2]  
Alazard T., 2012, PREPRINT
[3]   NUMERICAL-SIMULATION OF GRAVITY-WAVES [J].
CRAIG, W ;
SULEM, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :73-83
[4]   Well-posedness of the water-waves equations [J].
Lannes, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :605-654
[5]  
Lannes D., WATER WAVES IN PRESS
[6]   Well-posedness in Sobolev spaces of the full water wave problem in 2-D [J].
Wu, SJ .
INVENTIONES MATHEMATICAE, 1997, 130 (01) :39-72
[7]  
ZAKHAROV V. E., 1968, J. Appl. Mech. Tech. Phys., V2, P190, DOI DOI 10.1007/BF00913182