Capillary electrophoresis-Fourier transform ion cyclotron resonance mass Spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method

被引:53
作者
Baidoo, Edward E. K. [1 ,2 ]
Benket, Peter I. [1 ,2 ]
Neususs, Christian [5 ]
Pelzing, Matthias [4 ]
Kruppa, Gary [6 ]
Leary, Julie A. [3 ]
Keasling, Jay D. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[3] Univ Calif Davis, Genome Ctr, Davis, CA 92740 USA
[4] Bruker Biosci, Melbourne, Vic, Australia
[5] Aalen Univ, Aalen, Germany
[6] Bruker Daltonics Inc, Berkeley, CA 94720 USA
关键词
D O I
10.1021/ac800007q
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Capillary electrophoresis-mass spectrometry (CE-MS) is still widely regarded as an emerging tool in the field of metabolomics and metabolite profiling. A major reason for this is a reported lack of sensitivity of CE-MS when compared to gas chromatography-mass spectrometry GC/MS and liquid chromatography-mass spectrometry. The problems caused by the lack of sensitivity are exacerbated when CE is coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), due to the relatively low data acquisition rate of FT-ICR MS. Here, we demonstrate the use of an online CE sample preconcentration method that uses a combination of pH-mediated stacking and transient isotachophoresis, coupled with FT-ICR MS to improve the overall detection of cationic metabolites in the bacterium Desulfovibrio vulgaris Hildenborough. This method showed a significant increase in signal-to-noise ratio when compared to CE normal sample stacking, while providing good separation efficiency, reproducibility, and linearity. Detection limits for selected amino acids were between 0.1 and 2 mu M. Furthermore, FT-ICR MS detection consistently demonstrated good mass resolution and sub-ppm mass accuracy.
引用
收藏
页码:3112 / 3122
页数:11
相关论文
共 60 条
[1]  
Aharoni Asaph, 2002, OMICS A Journal of Integrative Biology, V6, P217, DOI 10.1089/15362310260256882
[2]  
Baker D. R., 1995, CAPILLARY ELECTROPHO
[3]   MONITORING OF A VIBRIO-NATRIEGENS AND DESULFOVIBRIO-VULGARIS MARINE AEROBIC BIOFILM ON A STAINLESS-STEEL SURFACE IN A LABORATORY TUBULAR FLOW SYSTEM [J].
BENBOUZIDROLLET, ND ;
CONTE, M ;
GUEZENNEC, J ;
PRIEUR, D .
JOURNAL OF APPLIED BACTERIOLOGY, 1991, 71 (03) :244-251
[4]   Potential of metabolomics as a functional genomics tool [J].
Bino, RJ ;
Hall, RD ;
Fiehn, O ;
Kopka, J ;
Saito, K ;
Draper, J ;
Nikolau, BJ ;
Mendes, P ;
Roessner-Tunali, U ;
Beale, MH ;
Trethewey, RN ;
Lange, BM ;
Wurtele, ES ;
Sumner, LW .
TRENDS IN PLANT SCIENCE, 2004, 9 (09) :418-425
[5]   CONCEPT OF THE EFFECTIVE MOBILITY OF THE HYDROGEN-ION AND ITS USE IN CATIONIC ISOTACHOPHORESIS [J].
BOCEK, P ;
GEBAUER, P ;
DEML, M .
JOURNAL OF CHROMATOGRAPHY, 1981, 219 (01) :21-28
[6]   Metabolomics applications of FT-ICR mass spectrometry [J].
Brown, SC ;
Kruppa, G ;
Dasseux, JL .
MASS SPECTROMETRY REVIEWS, 2005, 24 (02) :223-231
[7]   Metabolomics: quantification of intracellular metabolite dynamics [J].
Buchholz, A ;
Hurlebaus, J ;
Wandrey, C ;
Takors, R .
BIOMOLECULAR ENGINEERING, 2002, 19 (01) :5-15
[8]   Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy [J].
Cloarec, Olivier ;
Campbell, Alison ;
Tseng, Li-hong ;
Braumann, Ulrich ;
Spraul, Manfred ;
Scarfe, Graeme ;
Weaver, Richard ;
Nicholson, Jeremy K. .
ANALYTICAL CHEMISTRY, 2007, 79 (09) :3304-3311
[9]   THEORY OF FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROSCOPY .1. FUNDAMENTAL EQUATIONS AND LOW-PRESSURE LINE-SHAPE [J].
COMISAROW, MB ;
MARSHALL, AG .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (01) :110-119
[10]   Metabolite profiling for plant functional genomics [J].
Fiehn, O ;
Kopka, J ;
Dörmann, P ;
Altmann, T ;
Trethewey, RN ;
Willmitzer, L .
NATURE BIOTECHNOLOGY, 2000, 18 (11) :1157-1161